Journal of Logic, Language and Information

, Volume 7, Issue 4, pp 433–447 | Cite as

Proof Nets and the Complexity of Processing Center Embedded Constructions

  • Mark Johnson

Abstract

This paper shows how proof nets can be used to formalize the notion of “incomplete dependency” used in psycholinguistic theories of the unacceptability of center embedded constructions. Such theories of human language processing can usually be restated in terms of geometrical constraints on proof nets. The paper ends with a discussion of the relationship between these constraints and incremental semantic interpretation.

Human sentence processing psycholinguistics resource logics proof nets center embedding incomplete dependencies incremental semantic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chomsky, N., 1965, Aspects of the Theory of Syntax, Cambridge, MA: The MIT Press.Google Scholar
  2. Chomsky, N. and Miller, G., 1963, “Finitary models of language users,” pp. 419–492 in Handbook of Mathematical Psychology, Vol. 2, R. Luce, ed., New York: John Wiley and Sons.Google Scholar
  3. Gibson, E. and Thomas, J., 1996, “The processing complexity of English center-embedded and selfembedded structures,” in The Proceedings of the NELS, North Eastern Linguistic Society, ed., Amherst, MA: Graduate Student Association, University of Massachusetts.Google Scholar
  4. Girard, J.-Y., 1995, “Linear Logic: Its syntax and semantics,” pp. 1–42 in Advances in Linear Logic, J.-Y. Girard, Y. Lafont, and L. Regnier, eds., Cambridge, England: Cambridge University Press.Google Scholar
  5. Girard, J.-Y., Lafont, Y., and Taylor, P., 1989, Proofs and Types, Cambridge Tracts in Theoretical Computer Science, Vol. 7, Cambridge, England: Cambridge University Press.Google Scholar
  6. Lamarche, F. and Retoré, C., 1996, “Proof nets for the Lambek calculus — An overview,” pp. 241–262 in Proofs and Linguistic Categories, Proceedings of the 1996 Roma Workshop, V.M. Abrusci and C. Casadio, eds., Bologna: Cooperativa Libraria Universitaria Editrice Bologna.Google Scholar
  7. Lewis, R., 1996a, “Interference in short-term memory: The magical number two (or three) in sentence processing,” Journal of Psycholinguistic Research 25(1), 93–115.Google Scholar
  8. Lewis, R., 1996b, “A theory of grammatical but unacceptable embeddings,” Unpublished manuscript, Ohio State University.Google Scholar
  9. Moortgat, M., 1997, “Categorial type logics,” pp. 93–178 in Handbook of Logic and Language, J. van Benthem and A. ter Meulen, eds., Cambridge, MA: The MIT Press.Google Scholar
  10. Morrill, G.V., 1994, Type-Logical Grammar: Categorial Logic of Signs, Dordrecht: Kluwer Academic Publishers.Google Scholar
  11. Retoré, C., 1996, “Calcul de Lambek et logique linéaire,” Traitement Automatique des Langues 37(2), 39–70.Google Scholar
  12. Roorda, D., 1991, “Resource logics: Proof-theoretical investigations,” Ph.D. Thesis, University of Amsterdam.Google Scholar
  13. Roorda, D., 1992, “Proof nets for Lambek calculus,” Journal of Logic and Computation 2, 211–231.Google Scholar
  14. Stabler, E.P., 1994, “The finite connectivity of linguistic structure,” pp. 303–336 in Perspectives in Sentence Processing, C. Clifton, L. Frazier, and K. Rayner, eds., Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  15. van Benthem, J., 1995, Language in Action: Categories, Lambdas and Dynamic Logic, Cambridge, MA: The MIT Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Mark Johnson
    • 1
  1. 1.Department of Cognitive and Linguistic SciencesBrown UniversityProvidenceU.S.A.

Personalised recommendations