Advertisement

Journal of Biomolecular NMR

, Volume 16, Issue 2, pp 121–125 | Cite as

Measurement of dipolar couplings in a transducin peptide fragment weakly bound to oriented photo-activated rhodopsin

  • Bernd W. Koenig
  • Drake C. Mitchell
  • Simone König
  • Stephan Grzesiek
  • Burton J. Litman
  • Ad Bax
Article

Abstract

Rhodopsin-containing disks, isolated from rod outer segments of bovine retina, align at high magnetic fields with their membrane normal parallel to the magnetic field. After light-activation of rhodopsin, transient binding of the C-terminal transducin undecapeptide, selectively labeled with 15N at Leu5 and Gly9, results in residual dipolar contributions to the 1JNH splittings for these two residues. Both residues show 1JNH splittings which are smaller than in the dark-adapted or rhodopsin-free sample, and return to their isotropic values at a rate determined by the decay of the meta II state of rhodopsin. The dipolar couplings indicate that in the bound state, N-H vectors of Leu5 and Gly9 make angles of 48±4° and 40±8°, respectively, with the disk normal.  These `transferred' dipolar couplings potentially offer a useful method for studying the conformation and orientation of flexible, low affinity ligands when bound to oriented integral membrane receptors.

alignment membrane protein receptor rhodopsin transferred dipolar coupling transducin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bax, A. and Tjandra, N. (1997) J. Biomol. NMR, 10, 289–292.Google Scholar
  2. Blazynski, C. and Ostroy, S.E. (1984) Vision Res., 24, 459–470.Google Scholar
  3. Bolon, P.J., Al-Hashimi, H.M. and Prestegard, J.H. (1999) J. Mol. Biol., 293, 107–115.Google Scholar
  4. Clore, G.M. and Gronenborn, A.M. (1982) J. Magn. Reson., 48, 402–417.Google Scholar
  5. Clore, G.M., Gronenborn, A.M. and Bax, A. (1998) J. Magn. Reson., 133, 216–221.Google Scholar
  6. Conklin, B.R., Farfel, Z., Lustig, K.D., Julius, D. and Bourne, H.R. (1993) Nature, 363, 274–276.Google Scholar
  7. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.Google Scholar
  8. Dratz, E.A., Furstenau, J.E., Lambert, C.G., Thireault, D.L., Rarick, H., Schepers, T., Pakhlevaniants, S. and Hamm, H.E. (1993) Nature, 363, 276–281.Google Scholar
  9. Farrens, D.L., Altenbach, C., Yang, K., Hubbell, W.L. and Khorana, H.G. (1996) Science, 274, 768–770.Google Scholar
  10. Fischer, M.W.F., Losonczi, J.A., Weaver, J.L. and Prestegard, J.H. (1999) Biochemistry, 38, 9013–9022.Google Scholar
  11. Goldman, M. (1984) J. Magn. Reson., 60, 437–452.Google Scholar
  12. Hamm, H.E. (1998) J. Biol. Chem., 273, 669–672.Google Scholar
  13. Hamm, H.E., Deretic, D., Arendt, A., Hargrave, P.A., König, B. and Hofmann, K.P. (1988) Science, 241, 832–835.Google Scholar
  14. Kibelbek, J., Mitchell, D.C., Beach, J.M. and Litman, B.J. (1991) Biochemistry, 30, 6761–6769.Google Scholar
  15. Kisselev, O.G., Kao, J., Ponder, J.W., Fann, Y.C., Gautam, N. and Marshall, G.R. (1998) Proc. Natl. Acad. Sci. USA, 95, 4270–4275.Google Scholar
  16. Koenig, B.W., Hu, J.-S., Ottiger, M., Bose, S., Hendler, R.W. and Bax, A. (1999) J. Am. Chem. Soc., 121, 1385–1386.Google Scholar
  17. Kontaxis, G., Clore, G.M. and Bax, A., J. Magn. Reson., in press.Google Scholar
  18. Lambright, D.G., Sondek, J., Bohm, A., Skiba, N.P., Hamm, H.E. and Sigler, P.B. (1996) Nature, 379, 311–319.Google Scholar
  19. Lewis, B.A., Rosenblatt, C., Griffin, R.G., Courtemanche, J. and Herzfeld, J. (1985) Biophys. J., 47, 143–150.Google Scholar
  20. Ni, F. (1994) Prog. NMR Spectrosc., 26, 517–606.Google Scholar
  21. Prestegard, J.H. (1998) Nat. Struct. Biol., 5, NMR Suppl., 517–522.Google Scholar
  22. Schertler, G.F.X., Villa, C. and Henderson, R. (1993) Nature, 362, 770–772.Google Scholar
  23. Schertler, G.F.X. and Hargrave, P.A. (1995) Proc. Natl. Acad. Sci. USA, 92, 11578–11582.Google Scholar
  24. Shieh, T., Han, M., Sakmar, T.P. and Smith, S.O. (1997) J. Mol. Biol., 269, 373–384.Google Scholar
  25. Smith, H.G. and Litman, B.J. (1982) Methods Enzymol., 81, 57–61.Google Scholar
  26. Stinson, A.M., Wiegand, R.D. and Anderson, R.E. (1991) Exp. Eye Res., 52, 213–218.Google Scholar
  27. Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.Google Scholar
  28. Tjandra, N., Szabo, A. and Bax, A. (1997) J. Am. Chem. Soc., 118, 6986–6991.Google Scholar
  29. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.Google Scholar
  30. Wall, M., Coleman, D.E., Lee, E., Iniguez-Lluhi, J.A., Posner, J.A., Gilman, A.G. and Sprang, S.R. (1995) Cell, 83, 1047–1058.Google Scholar
  31. Yeagle, P.L., Alderfelder, J.L., Salloum, A.C., Ali, L. and Albert, A.D. (1997) Biochemistry, 36, 3864–3869.Google Scholar
  32. Yeagle, P.L., Alderfelder, J.L. and Albert, A.D. (1997) Biochemistry, 36, 9649–9654.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Bernd W. Koenig
    • 1
  • Drake C. Mitchell
    • 2
  • Simone König
    • 3
  • Stephan Grzesiek
    • 4
  • Burton J. Litman
    • 2
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, NIDDKNational Institutes of HealthBethesdaU.S.A.
  2. 2.Laboratory of Membrane Biophysics and Biochemistry, NIAAANational Institutes of HealthRockville
  3. 3.Laboratory of Biophysical Chemistry, NHLBINational Institutes of HealthBethesdaU.S.A.
  4. 4.Structural Biology InstituteResearch Center JülichJülichGermany

Personalised recommendations