Advertisement

Journal of Biomolecular NMR

, Volume 13, Issue 3, pp 199–211 | Cite as

Cα and Cβ Carbon-13 Chemical Shifts in Proteins From an Empirical Database

  • Mitsuo Iwadate
  • Tetsuo Asakura
  • Michael P. Williamson
Article

Abstract

We have constructed an extensive database of 13C Cα and Cβ chemical shifts in proteins of solution, for proteins of which a high-resolution crystal structure exists, and for which the crystal structure has been shown to be essentially identical to the solution structure. There is no systematic effect of temperature, reference compound, or pH on reported shifts, but there appear to be differences in reported shifts arising from referencing differences of up to 4.2 ppm. The major factor affecting chemical shifts is the backbone geometry, which causes differences of ca. 4 ppm between typical α- helix and β-sheet geometries for Cα, and of ca. 2 ppm for Cβ. The side-chain dihedral angle χ1 has an effect of up to 0.5 ppm on the Cα shift, particularly for amino acids with branched side-chains at Cβ. Hydrogen bonding to main-chain atoms has an effect of up to 0.9 ppm, which depends on the main- chain conformation. The sequence of the protein and ring-current shifts from aromatic rings have an insignificant effect (except for residues following proline). There are significant differences between different amino acid types in the backbone geometry dependence; the amino acids can be grouped together into five different groups with different φ,ψ shielding surfaces. The overall fit of individual residues to a single non-residue-specific surface, incorporating the effects of hydrogen bonding and χ1 angle, is 0.96 ppm for both Cα and Cβ. The results from this study are broadly similar to those from ab initio studies, but there are some differences which could merit further attention.

carbon-13 chemical shifts hydrogen bonding protein structure structure refinement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10858_2004_Article_200104_MOESM1_ESM.rtf (35 kb)
Supporting Information (RTF 39 KB)

References

  1. Ando, I., Asakawa, N. and Webb, G.A. (1998a) In Solid State NMR of Polymers (Eds., Ando, I. and Asakura, T. Elsevier, Amsterdam, pp. 1–21.Google Scholar
  2. Ando, I., Kameda, T., Asakawa, N., Kuroki, S. and Kurosu, H. (1998b) J. Mol. Struct., 441, 213–230.CrossRefADSGoogle Scholar
  3. Asakawa, N., Kurosu, H. and Ando, I. (1994a) J. Mol. Struct., 323, 279–285.CrossRefADSGoogle Scholar
  4. Asakawa, N., Kurosu, H., Ando, I., Shoji, A. and Ozaki, T. (1994b) J. Mol. Struct., 317, 119–129.CrossRefADSGoogle Scholar
  5. Beger, R.D. and Bolton, P.H. (1997) J. Biomol. NMR, 10, 129–142.CrossRefGoogle Scholar
  6. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, F., Bryce, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) J. Mol. Biol., 112, 535–542.CrossRefGoogle Scholar
  7. Blanchard, L., Hunter, C.N. and Williamson, M.P. (1997) J. Biomol. NMR, 9, 389–395.CrossRefGoogle Scholar
  8. Braun, D., Wider, G. and Wüthrich, K. (1994) J. Am. Chem. Soc., 116, 8466–8469.CrossRefGoogle Scholar
  9. Clore, G.M. and Gronenborn, A.M. (1998) Proc. Natl. Acad. Sci. USA, 95, 5891–5898.CrossRefADSGoogle Scholar
  10. de Dios, A.C. (1996) Progr. NMR Spectrosc., 29, 229–278.CrossRefGoogle Scholar
  11. de Dios, A.C., Laws, D.D. and Oldfield, E. (1994) J. Am. Chem. Soc., 116, 7784–7786.CrossRefGoogle Scholar
  12. Haigh, C.W. and Mallion, R.B. (1980) Progr. NMR Spectrosc., 13, 303–344.CrossRefGoogle Scholar
  13. Havlin, R.H., Le, H., Laws, D.D., de Dios, A.C. and Oldfield, E. (1997) J. Am. Chem. Soc., 119, 11951–11958.CrossRefGoogle Scholar
  14. Kabsch, W. and Sander, C. (1983) Biopolymers, 22, 2577–2637.CrossRefGoogle Scholar
  15. Kuszewski, J., Qin, J., Gronenborn, A.M. and Clore, G.M. (1995) J. Magn. Reson., B106, 92–96.Google Scholar
  16. Kuszewski, J., Gronenborn, A.M. and Clore, G.M. (1996) Protein Sci., 5, 1067–1080.CrossRefGoogle Scholar
  17. Laws, D.D., de Dios, A.C. and Oldfield, E. (1993) J. Biomol. NMR, 3, 607–612.CrossRefGoogle Scholar
  18. Le, H. and Oldfield, E. (1994) J. Biomol. NMR, 4, 341–348.CrossRefGoogle Scholar
  19. Le, H., Pearson, J.G., de Dios, A.C. and Oldfield, E. (1995) J. Am. Chem. Soc., 117, 3800–3807.CrossRefGoogle Scholar
  20. Luginbühl, P., Szyperski, T. and Wüthrich, K. (1995) J. Magn. Reson., B109, 229–233.Google Scholar
  21. Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wüthrich, K. (1998) Pure Appl. Chem., 70, 117–142.CrossRefGoogle Scholar
  22. Oldfield, E. (1995) J. Biomol. NMR, 5, 217–225.CrossRefGoogle Scholar
  23. Ösapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436–9444.CrossRefGoogle Scholar
  24. Pearson, J.G., Wang, J.-F., Markley, J.L., Le, H. and Oldfield, E. (1995) J. Am. Chem. Soc., 117, 8823–8829.CrossRefGoogle Scholar
  25. Pearson, J.G., Le, H., Sanders, L.K., Godbout, N., Havlin, R.H. and Oldfield, E. (1997) J. Am. Chem. Soc., 119, 11941–11950.CrossRefGoogle Scholar
  26. Sitkoff, D. and Case, D.A. (1997) J. Am. Chem. Soc., 119, 12262–12273.CrossRefGoogle Scholar
  27. Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490–5492.CrossRefGoogle Scholar
  28. Szilágyi, L. (1988) Progr. NMR Spectrosc., 27, 325–444.CrossRefGoogle Scholar
  29. Williamson, M.P. (1994) Biochem. J., 297, 249–260.Google Scholar
  30. Williamson, M.P. and Asakura, T. (1993) J. Magn. Reson., B101, 63–71.Google Scholar
  31. Williamson, M.P. and Asakura, T. (1997) In Methods in Molecular Biology, Vol. 17 (Ed., Reid, D.G.) Humana Press, Totowa, NJ, pp. 53–69.Google Scholar
  32. Wishart, D.S. and Sykes, B.D. (1994a) J. Biomol. NMR, 4, 171–180.CrossRefGoogle Scholar
  33. Wishart, D.S. and Sykes, B.D. (1994b) Methods Enzymol., 239, 363–392.CrossRefGoogle Scholar
  34. Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995a) J. Biomol. NMR, 5, 1–22.CrossRefGoogle Scholar
  35. Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995b) J. Biomol. NMR, 6, 135–140.CrossRefGoogle Scholar
  36. Yao, J., Dyson, H.J. and Wright, P.E. (1997) FEBS Lett., 419, 285–289.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Mitsuo Iwadate
    • 1
  • Tetsuo Asakura
    • 1
  • Michael P. Williamson
    • 2
  1. 1.Department of BiotechnologyTokyo University of Agriculture and TechnologyKoganei, Tokyo 184Japan
  2. 2.Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldU.K.

Personalised recommendations