Nonlinear Dynamics

, Volume 21, Issue 1, pp 101–133 | Cite as

The Nonlinear Dynamics of Filaments

  • Alain Goriely
  • Michael Tabor


The Kirchhoff equations provide a well-established framework tostudy the statics and dynamics of thin elastic filaments. The study ofstatic solutions to these equations has a long history and provides thebasis for many investigations, both past and present, of theconfigurations taken by filaments subject to various external forces andboundary conditions. Here we review recently developed techniquesinvolving linear and nonlinear analyses that enable one to study, insome detail, the actual dynamics of filament instabilities and thelocalized structures that can ensue. By introducing a novel arc-lengthpreserving perturbation scheme a linear stability analysis can beperformed which, in turn, leads to dispersion relations that provide theselection mechanism for the shape of an unstable filament. Thesedispersion relations provide the starting point for nonlinear analysisand the derivation of new amplitude equations which describe thefilament dynamics above the instability threshold. Here we will mainlybe concerned with the analysis of rods of circular cross-sections andsurvey the behavior of rings, rods, helices and show how these resultslead to a complete dynamical description of filament buckling.

elastic filaments buckling looping dynamical instabilities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zajac, E. E., ‘Stability of two planar loop elasticas’, Transactions of the ASME, March, 1962, 136–142.Google Scholar
  2. 2.
    Coyne, J., ‘Analysis of the formation and elimination of loops in twisted cable’, IEE Journal of Oceanic Engineering 15, 1990, 72–83.Google Scholar
  3. 3.
    Barkley, M. D. and Zimm, B. H., ‘Theory of twisting and bending of chain macromolecules; Analysis of the fluorescence depolorization of DNA’, Journal of Chemical Physics 70, 1979, 2991–3006.Google Scholar
  4. 4.
    Benham, C. J., ‘Theoretical analysis of conformational equilibria in superhelical DNA’, Annual Review of Biophysical Chemistry 14, 1985, 23–45.Google Scholar
  5. 5.
    Mendelson, N. H., ‘Bacterial macrofibers: The morphogenesis of complex multicellular bacterial forms’, Scientific Progress Oxford 74, 1990, 425–441.Google Scholar
  6. 6.
    Thwaites, J. J. and Mendelson, N. H., ‘Mechanical behavior of bacterial cell walls’, Advances in Microbiological Physiology 32, 1991, 174–222.Google Scholar
  7. 7.
    Hunt, N. G. and Hearst, J. E., ‘Elastic model of DNA supercoiling in the infinite length limit’, Journal of Chemical Physics 12, 1991, 9329–9336.Google Scholar
  8. 8.
    Schlick, T. and Olson, W. K., ‘Trefoil knotting revealed by molecular dynamics simulations of supercoiled DNA’, Science 257, 1992, 1110–1114.Google Scholar
  9. 9.
    Yang, Y., Tobias, I., and Olson, W. K., ‘Finite element analysis of DNA supercoiling’, Journal of Chemical Physics 98, 1993, 1673–1686.Google Scholar
  10. 10.
    Bauer, W. R., Lund, R. A., and White, J. H., ‘Twist and writhe of a DNA loop containing intrinsic bends’, Proceedings of the National Academy of Science (USA) 90, 1993, 833–837.Google Scholar
  11. 11.
    Shi, Y. and Hearst, J. E., ‘The Kirchhoff elastic rod, the nonlinear Schrödinger equation and DNA supercoiling’, Journal of Chemical Physics 101, 1994, 5186–5200.Google Scholar
  12. 12.
    Goldstein, R. E. and Langer, S. A., ‘Nonlinear dynamics of stiff polymers’, Physical Review Letters 75, 1995, 1094.Google Scholar
  13. 13.
    Shelley, M. J. and Ueda, T., ‘The nonlocal dynamics of stretching, buckling filaments’, in Advances in Multi-Fluid Flows, D. Papageorgiou and Y. Renardi (eds.), SIAM, Philadelphia, PA, 1996, pp. 415–425.Google Scholar
  14. 14.
    Keener, J. P., ‘Knotted vortex filament in an ideal fluid’, Journal of Fluid Mechanics 211, 1990, 629–651.Google Scholar
  15. 15.
    Spruit, H. C., ‘Motion of magnetic flux tubes in the solar convection zone and chromosphere’, Astronomy and Astrophysics 98, 1981, 155.Google Scholar
  16. 16.
    Da Silva, S. and Chouduri, A. R., ‘A theoretical model for tilts of bipolar magnetic regions’, Astronomy and Astrophysics 272, 1993, 621.Google Scholar
  17. 17.
    Thompson, J. M. T. and Champneys, A. R., ‘From helix to localized writhing in the torsional post-buckling of elastic rods’, Proceedings of Royal Society of London Series A 452, 1996, 117–138.Google Scholar
  18. 18.
    Schlick, T., ‘Modeling superhelical DNA: Recent analytical and dynamical approaches’, Current Opinions in Structural Biology 5, 1995, 245–262.Google Scholar
  19. 19.
    Dill, E. H., ‘Kirchhoff's theory of rods’, Archives of the History of Exact Science 44, 1992, 2–23.Google Scholar
  20. 20.
    Love, A. E. H., A Treatise on theMathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1892.Google Scholar
  21. 21.
    Landau, L. D. and Lifshitz, E. M., Theory of Elasticity, Pergamon Press, Oxford, 1959.Google Scholar
  22. 22.
    Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability, McGraw-Hill, New York, 1961.Google Scholar
  23. 23.
    Coleman, B. D. and Dill, E. H., ‘Flexure waves in elastic rods’, Journal of Acoustical Society of America 91, 1992, 2663.Google Scholar
  24. 24.
    Tanaka, F. and Takahashi, H., ‘Elastic theory of supercoiled DNA’, Journal of Chemical Physics 11, 1985, 6017–6026.Google Scholar
  25. 25.
    Tsuru, H., ‘Equilibrium shapes and vibrations of thin elastic rod’, Journal of the Physical Society of Japan 56, 1987, 2309–2324.Google Scholar
  26. 26.
    Maddocks, J. H. and Dichmann, D. J., ‘Conservation laws in the dynamics of rods’, Journal of Elasticity 34, 1994, 83–96.Google Scholar
  27. 27.
    Klapper, I. and Tabor, M., ‘Dynamics of twist and writhe and the modeling of bacterial fibers’, Mathematical Approaches to Biomolecular Structure and Dynamics, J. Mesirov, K. Schuiten, and D. W. Summers (eds.), Springer-Verlag, New York, 1996, pp. 139–159.Google Scholar
  28. 28.
    Klapper, I., ‘Biological applications of the dynamics of twisted elastic rods’, Journal of Computational Physics 125, 1996, 325–337.Google Scholar
  29. 29.
    Goriely, A. and Tabor,M., ‘New amplitude equations for thin elastic rods’, Physical Review Letters 77, 1996, 3537–3540.Google Scholar
  30. 30.
    Goriely, A. and Tabor, M., ‘Nonlinear dynamics of filaments I: Dynamical instabilities’, Physica D 105, 1997, 20–44.Google Scholar
  31. 31.
    Goriely, A. and Tabor, M., ‘Nonlinear dynamics of filaments II: Nonlinear analysis’, Physica D 105, 1997, 45–61.Google Scholar
  32. 32.
    Goriely, A. and Tabor, M., ‘Nonlinear dynamics of filaments III: Instabilities of helical rods’, Proceedings of the Royal Society of London Series A 453, 1997, 2583–2601.Google Scholar
  33. 33.
    Goriely, A. and Tabor, M., ‘Nonlinear dynamics of filaments IV: Spontaneous looping’, Proceedings of the Royal Society of London Series A 455, 1998, 3183–3202.Google Scholar
  34. 34.
    Goriely, A., Nizette, M., and Tabor, M., ‘On the dynamics of elastic strips’, Journal of Nonlinear Science, 1999, submitted.Google Scholar
  35. 35.
    Coleman, B. D., Dill, E. H., Lembo, M., Lu, Z., and Tobias, I., ‘On the dynamics of rods in the theory of Kirchhoff and Clebsch’, Archives for Rational Mechanics and Analysis 121, 1993, 339–359.Google Scholar
  36. 36.
    Goriely, A., Mendelson, N., and Tabor, M., ‘Dynamical buckling of Bacillus subtilis’, Preprint, 1998.Google Scholar
  37. 37.
    Goriely, A. and Tabor, M., ‘Spontaneous helix-hand reversal and tendril perversion in climbing plants’, Physical Review Letters 80, 1998, 1564–1567.Google Scholar
  38. 38.
    Newell, A., Envelope Equations, Lectures in Applied Mathematics, Vol. 15, American Mathematical Society, Providence, RI, 1974.Google Scholar
  39. 39.
    Rogers, K. A., ‘Stability exchange in parameter dependent constrained variational principles with applications to elastic rod models os DNA minicircles’, University of Maryland, Ph.D. Thesis, 1997.Google Scholar
  40. 40.
    Kehrbaum, S. and Maddocks, J. H., ‘Effective properties of elastic rods with high intrinsic twist’, Preprint, 1997.Google Scholar
  41. 41.
    Goriely, A. and Lega, J., ‘Pulses, fronts and oscillations of an elastic rod’, Physica D, 1998, to be published.Google Scholar
  42. 42.
    Weiss, J., Tabor, M. and Carnevale, G., ‘The Painlevé property for partial differential equations’, Journal of Mathematical Physics 24, 1983, 3.Google Scholar
  43. 43.
    Champneys, A. R., van der Heiden, G. H. M., and Thompson, J. M. T., ‘Spatially complex localisation after one-twist-per-wave equilibria in twisted rod circular rods with initial curvature’, Philosophical Transactions of the Royal Society of London Series A 355, 1988, 2151–2174.Google Scholar
  44. 44.
    Darwin, Ch., The Movements and Habits of Climbing Plants, Appleton, New York, 1888.Google Scholar
  45. 45.
    Hearle, J. W. S., Thwaites, J. J., and Amirbayat, J. (eds.), Mechanics of Flexible Fibre Assemblies, Sijthoff & Noordhoff, Germantown, 1980.Google Scholar
  46. 46.
    Tilby, M. J., ‘Helical shape and wall synthesis in bacterium’, Nature 266, 1977, 450–452.Google Scholar
  47. 47.
    Galloway, J. W., ‘Macromolecular asymmetry’, in Biological Asymmetry and Handedness, G. R. Bock and J. Marsh (eds.), Wiley-Interscience, New York, 1991, pp. 16–35.Google Scholar
  48. 48.
    Goldstein, R. E., Powers, T. R., and Wiggins, C. H., ‘Viscous nonlinear dynamics of twist and writhe’, Physical Review Letters 80, 1998, 5232–5235.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Alain Goriely
    • 1
  • Michael Tabor
    • 2
  1. 1.Department of Mathematics and Program in Applied MathematicsUniversity of ArizonaTucsonU.S.A.
  2. 2.Department of Mathematics and Program in Applied MathematicsUniversity of ArizonaTucsonU.S.A.

Personalised recommendations