Journal of Biomolecular NMR

, Volume 12, Issue 3, pp 361–372 | Cite as

Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules

  • Marcel Ottiger
  • Ad Bax


Weak alignment of solute molecules with the magnetic field can be achieved in a dilute liquid crystalline medium, consisting of an aqueous mixture of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl-phosphatidylcholine (DHPC). For a certain range of molar ratios, DMPC and DHPC can form large, disc-shaped particles, commonly referred to as bicelles (Sanders and Schwonek, 1992), which cooperatively align in the magnetic field and induce a small degree of alignment on asymmetrically shaped solute molecules. As a result, dipolar couplings between pairs of 1H, 13C or 15N nuclei are no longer averaged to zero by rotational diffusion and they can be readily measured, providing valuable structural information. The stability of these liquid crystals and the degree of alignment of the solute molecules depend strongly on experimental variables such as the DMPC:DHPC ratio and concentration, the preparation protocol of the DMPC/DHPC mixtures, as well as salt, temperature, and pH. The lower temperature limit for which the liquid crystalline phase is stable can be reduced to 20 °C by using a ternary mixture of DHPC, DMPC, and 1-myristoyl-2-myristoleoyl-sn-glycero-3-phosphocholine, or a binary mixture of DHPC and ditridecanoyl-phosphatidylcholine. These issues are discussed, with an emphasis on the use of the medium for obtaining weak alignment of biological macromolecules.

alignment bicelle dipolar coupling liquid crystal protein NMR phospholipid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bastiaan, E.W., MacLean, C., van Zijl, P.C.M. and Bothner-By, A.A. (1987) Annu. Rep. NMR Spectrosc., 9, 35–77.Google Scholar
  2. Bax, A. and Tjandra, N. (1997) J. Biomol. NMR, 10, 289–292.Google Scholar
  3. Bothner-By, A.A. (1996) Encyclopedia of Nuclear Magnetic Resonance, (Eds Grant, D.M. and Harris, R.K.), Wiley, Chichester, pp. 2932–2938.Google Scholar
  4. Burns, R.A., Roberts, M.F., Dluhy, R. and Mendelsohn, M.R. (1982) J. Am. Chem. Soc., 104, 430–438.Google Scholar
  5. Clore, G.M., Gronenborn, A.M. and Bax, A. (1998) J. Magn. Reson., 133, 216–221.Google Scholar
  6. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.Google Scholar
  7. Emsley, J. W. and Lindon, J. C. (1975) NMR Spectroscopy Using Liquid Crystal Solvents, Pergamon Press, New York, NY, U.S.A.Google Scholar
  8. Finer, E.G. and Darke, A. (1974) Chem. Phys. Lipids, 12, 1–16.Google Scholar
  9. Garrett, D. S., Powers, R., Gronenborn, A. M. and Clore, G. M. (1991) J. Magn. Reson., 95, 214–220.Google Scholar
  10. Gawrisch, K., Arnold, K., Gottwald, T., Klose, G. and Volke, F. (1978) Studia Biophys., 74, 36–49.Google Scholar
  11. Gawrisch, K., Ruston, D., Zimmerberg, J., Parsegian, V.A., Rand, R.P. and Fuller, N. (1992) Biophys. J., 61, 1213–1223.Google Scholar
  12. Grit, M. and Cromelin, D.J.A. (1993) Chem. Phys. Lipids, 64, 3–18.Google Scholar
  13. King, H.C., Wang, K.Y., Goljer, I. and Bolton, P.H. (1995) J. Magn. Reson., B109, 323–325.Google Scholar
  14. Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559.Google Scholar
  15. Metz, G., Howard, K.P., van Liemt, W.B.S., Prestegard, J.H., Lugtenburg, J. and Smith, S.O. (1995) J. Am. Chem. Soc., 117, 564–565.Google Scholar
  16. Ottiger, M., Tjandra, N. and Bax, A. (1997) J. Am. Chem. Soc., 119, 9825–9830.Google Scholar
  17. Plaksin, D., Chacko, S., McPhie, P., Bax, A., Padlan, E.A. and Margulies, D. H. (1996) J. Exp. Med., 184, 1–8.Google Scholar
  18. Prosser, R. S., Hunt, S. A., DiNatale, J.A. and Vold, R.R. (1996) J. Am. Chem. Soc., 118, 269–270.Google Scholar
  19. Prosser, R. S., Hwang, J. S. and Vold, R.R. (1998) Biophys. J., 74, 2405–2418.Google Scholar
  20. Ram, P. and Prestegard, J. H. (1988) Biochim. Biophys. Acta, 940, 289–294.Google Scholar
  21. Salsbury, N.J., Darke A. and Chapman, D. (1972) Chem. Phys. Lipids, 8, 142–151.Google Scholar
  22. Sanders, C.R. and Prestegard, J.H. (1990) Biophys. J., 58, 447–460.Google Scholar
  23. Salvatore, B.A., Ghose, R. and Prestegard, J.H. (1996) J. Am. Chem. Soc., 118, 4001–4008.Google Scholar
  24. Sanders, C.R. and Prestegard, J. H. (1990) Biophys. J., 58, 447–460.Google Scholar
  25. Sanders, C.R. and Schwonek, J.P. (1992) Biochemistry, 31, 8898–8905.Google Scholar
  26. Sanders, C.R., Hare, B.J., Howard, K.P. and Prestegard, J.H. (1994) Prog. Nucl. Magn. Reson. Spectrosc., 26, 421–444.Google Scholar
  27. Saupe, A. and Englert, G. (1963) Phys. Rev. Lett., 11, 462–465.Google Scholar
  28. Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.Google Scholar
  29. Tjandra, N., Grzesiek, S. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6264–6272.Google Scholar
  30. Tjandra, N., Omichinski, J. G., Gronenborn, A. M., Clore, G. M. and Bax, A. (1997) Nat. Struct. Biol., 4, 732–738.Google Scholar
  31. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J. H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.Google Scholar
  32. Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol. Biol., 194, 531–544.Google Scholar
  33. Vold, R.R. and Prosser, P.S. (1996) J. Magn. Reson., B113, 267–271.Google Scholar
  34. Wagner, G. and Brühwihler, D. (1986) Biochemistry, 25, 5839–5843.Google Scholar
  35. Wand, A.J., Urbauer, J.L., McEvoy, R.P. and Bieber, R.J. (1996) Biochemistry, 35, 6116–6125.Google Scholar
  36. Wang, A.C., Grzesiek, S., Tschudin, R., Lodi, P.J. and Bax, A. (1995) J. Biomol. NMR, 5, 376–382.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Marcel Ottiger
    • 1
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaU.S.A

Personalised recommendations