Advertisement

Journal of Biomolecular NMR

, Volume 17, Issue 4, pp 331–335 | Cite as

Bridging the gap: A set of selective 1H-15N-correlations to link sequential neighbors of prolines

  • Mario Schubert
  • Linda J. Ball
  • Hartmut Oschkinat
  • Peter Schmieder
Article

Abstract

Triple-resonance experiments are standard in the assignment of protein spectra. Conventional assignment strategies use 1H-15N-correlations as a starting point and therefore have problems when proline appears in the amino acid sequence, which lacks a signal in these correlations. Here we present a set of amino acid selective pulse sequences which provide the information to link the amino acid on either side of proline residues and thus complete the sequential assignment. The experiments yield amino acid type selective 1H-15N-correlations which contain signals from the amino protons of the residues either preceding or following proline in the amino acid sequence. These protons are correlated with their own nitrogen or with that of the proline. The new experiments are recorded as two-dimensional experiments and their performance is demonstrated by application to a 115-residue protein domain.

amino acid type selective experiments proline sequential assignment triple-resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, L.J., Kühne, R., Schmieder, P., Hoffmann, B., Schneider-Mergener, J., Häfner, A., Hof, M., Wahl, M., Walter, U., Oschkinat, H. and Jarchau, T. (2000) EMBO J., in press.Google Scholar
  2. Bottomley, M.J., Macias, M.J., Liu, Z. and Sattler, M. (1999) J.Biomol. NMR, 13, 381–385.Google Scholar
  3. Cavanagh, J., Fairbrother, W.J., Palmer III, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy, Academic Press, San Diego, CA.Google Scholar
  4. Clore, G.M. and Gronenborn, A.M. (1991) Prog. NMR Spectrosc., 23, 43–92.Google Scholar
  5. Emsley, L. and Bodenhausen, G. (1990) Chem. Phys. Lett., 165, 469–476.Google Scholar
  6. Geen, H. and Freeman, R. (1991) J. Magn. Reson., 93, 93–141.Google Scholar
  7. Gertler, F.B., Niebuhr, K., Reinhard, M., Wehland, J. and Soriano, P. (1996) Cell, 87, 227–239.Google Scholar
  8. Kanelis, V., Donaldson, L., Muhandiram, D.R., Rotin, D., Forman-Kay, J.D. and Kay, L.E. (2000) J. Biomol. NMR, 16, 253–259.Google Scholar
  9. Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496–514.Google Scholar
  10. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393–399.Google Scholar
  11. Montelione, G.T. and Wagner, G. (1990) J. Magn. Reson., 87, 183–188.Google Scholar
  12. Moseley, H.N. and Montelione, G.T. (1999) Curr. Opin. Struct. Biol., 9, 635–642 and references cited therein.Google Scholar
  13. Olejniczak, E.T. and Fesik, S.W. (1994) J. Am. Chem. Soc., 116, 2215–2216.Google Scholar
  14. Sattler, M., Schleucher, J. and Griesinger, C. (1999) Prog. NMR Spectrosc., 34, 93–158.Google Scholar
  15. Schmieder, P., Leidert, M., Kelly, M.J.S. and Oschkinat, H. (1998) J. Magn. Reson., 131, 199–201.Google Scholar
  16. Schubert, M., Smalla, M., Schmieder, P. and Oschkinat, H. (1999) J. Magn. Reson., 141, 34–43.Google Scholar
  17. Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R. (1983) J. Magn. Reson., 52, 335–338.Google Scholar
  18. Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64, 547–552.Google Scholar
  19. Sklenar, V., Piotto, M., Leppik, R. and Saudek, V. (1993) J. Magn. Reson., A102, 241–245.Google Scholar
  20. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Mario Schubert
    • 1
  • Linda J. Ball
    • 1
  • Hartmut Oschkinat
    • 1
  • Peter Schmieder
    • 1
  1. 1.Forschungsinstitut für Molekulare PharmakologieBerlinGermany

Personalised recommendations