Advertisement

Journal of Biomolecular NMR

, Volume 18, Issue 2, pp 101–105 | Cite as

Measurement of one-bond 15N-13C′ dipolar couplings in medium sized proteins

  • James J. Chou
  • Frank Delaglio
  • Ad Bax
Article

Abstract

A simple and accurate method is described for measurement of 1JC′N splittings in isotopically enriched proteins. The method is of the quantitative J correlation type, and the 1JC′N splitting is derived from the relative intensity in two 3D TROSY-HNCO spectra with 1JC′N dephasing intervals of ∼1/(21JC′N) (reference intensity) and ∼1/1JC′N (residual intensity). If the two spectra are recorded under identical conditions and with the same number of scans, the random error in the 1JC′N value extracted in this manner is inversely related to the signal-to-noise (S/N) in the reference spectrum. A S/N of 30:1 in the reference spectrum yields random errors of less than 0.2 Hz in the extracted 1JC′N value. Dipolar couplings obtained from the difference in 1JC′N splitting in the isotropic and liquid crystalline phase for the C-terminal domain of calmodulin are in excellent agreement with its 1.68-Å crystal structure, but agree considerably less with the 2.2-Å structure.

calmodulin dipolar coupling HNCO J(NCliquid crystal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babu, Y.S., Bugg, C.E. and Cook, W.J. (1988) J. Mol. Biol., 204, 191–204.Google Scholar
  2. Ban, C., Ramakrishnan, B., Ling, K.Y., Kung, C. and Sundaralingam, M. (1994) Acta Crystallogr., D50, 50–63.Google Scholar
  3. Barrientos, L.G., Dolan, C. and Gronenborn, A.M. (2000) J. Biomol. NMR, 16, 329–337.Google Scholar
  4. Bastiaan, E.W., Maclean, C., van Zijl, P.C.M. and Bothner-By, A.A. (1987) Annu. Rep. NMR Spectrosc., 19, 35–77.Google Scholar
  5. Bax, A., Vuister, G.W., Grzesiek, S., Delaglio, F., Wang, A.C., Tschudin, R. and Zhu, G. (1994) Methods Enzymol., 239, 79–105.Google Scholar
  6. Clore, G.M., Starich, M.R., Bewley, C.A., Cai, M.L. and Kuszewski, J. (1999) J. Am. Chem. Soc., 121, 6513–6514.Google Scholar
  7. Clore, G.M., Starich, M.R. and Gronenborn, A.M. (1998) J. Am. Chem. Soc., 120, 10571–10572.Google Scholar
  8. Cordier, F. and Grzesiek, S. (1999) J. Am. Chem. Soc., 121, 1601–1602.Google Scholar
  9. Cornilescu, G., Ramirez, B.E., Frank, M.K., Clore, G.M., Gronenborn, A.M. and Bax, A. (1999) J. Am. Chem. Soc., 121, 6275–6279.Google Scholar
  10. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.Google Scholar
  11. Delaglio, F., Kontaxis, G. and Bax, A. (2000) J. Am. Chem. Soc., 122, 2142–2143.Google Scholar
  12. Drohat, A.C., Tjandra, N., Baldisseri, D.M. and Weber, D.J. (1999) Protein Sci., 8, 800–809.Google Scholar
  13. Fleming, K., Gray, D., Prasannan, S. and Matthews, S. (2000) J. Am. Chem. Soc., 122, 5224–5225.Google Scholar
  14. Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185–204.Google Scholar
  15. Hansen, M.R., Mueller, L. and Pardi, A. (1998) Nat. Struct. Biol., 5, 1065–1074.Google Scholar
  16. Juranic, N., Ilich, P.K. and Macura, S. (1995) J. Am. Chem. Soc., 117, 405–410.Google Scholar
  17. Kontaxis, G., Clore, G.M. and Bax, A. (2000) J. Magn. Reson., 143, 184–196.Google Scholar
  18. Logan, T.M., Olejniczak, E.T., Xu, R.X. and Fesik, S.W. (1993) J. Biomol. NMR, 3, 225–231.Google Scholar
  19. Losonczi, J.A., Andrec, M., Fischer, M.W.F. and Prestegard, J.H. (1999) J. Magn. Reson., 138, 334–342.Google Scholar
  20. Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 12334–12341.Google Scholar
  21. Ottiger, M., Delaglio, F. and Bax, A. (1998) J. Magn. Reson., 131, 373–378.Google Scholar
  22. Ottiger, M., Tjandra, N. and Bax, A. (1997) J. Am. Chem. Soc., 119, 9825–9830.Google Scholar
  23. Permi, P. and Annila, A. (2000) J. Biomol. NMR, 16, 221–227.Google Scholar
  24. Pervushin, K.V., Wider, G. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 345–348.Google Scholar
  25. Prosser, R.S., Losonczi, J.A. and Shiyanovskaya, I.V. (1998) J. Am. Chem. Soc., 120, 11010–11011.Google Scholar
  26. Salzmann, M, Wider, G., Pervushin, K., Senn, H. and Wüthrich, K. (1999) J. Am. Chem. Soc., 121, 844–848.Google Scholar
  27. Sanders, C.R. and Schwonek, J.P. (1992) Biochemistry, 31, 8898–8905.Google Scholar
  28. Sørensen, M.D., Meissner, A. and Sørensen, O.W. (1997) J. Biomol. NMR, 10, 181–186.Google Scholar
  29. Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.Google Scholar
  30. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. and Bax, A. (1997) Nat. Struct. Biol., 4, 732–738.Google Scholar
  31. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.Google Scholar
  32. Wang, Y.X., Marquardt, J.L., Wingfield, P., Stahl, S.J., Lee-Huang, S., Torchia, D. and Bax, A. (1998) J. Am. Chem. Soc., 120, 7385–7386.Google Scholar
  33. Zweckstetter, M. and Bax, A. (2000) J. Am. Chem. Soc., 122, 3791–3792.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • James J. Chou
    • 1
  • Frank Delaglio
    • 1
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaU.S.A.

Personalised recommendations