, Volume 9, Issue 5, pp 369–379 | Cite as

Effect of calcium on the surfactant tolerance of a fluoranthene degrading bacterium

  • Pia A. Willumsen
  • Ulrich Karlson


Surfactants are known to increase the apparent aqueous solubility of polycyclic aromatic hydrocarbons (PAHs) and may thus be used to enhance the bioavailability and thereby to stimulate the biodegradation of these hydrophobic compounds. However, surfactants may in some cases reduce or inhibit biodegradation because of toxicity to the bacteria. In this study, toxicity of surfactants on Sphingomonas paucimobilis strain EPA505 and the effect on fluoranthene mineralization were investigated using Triton X-100 as model surfactant. The data showed that amendment with 0.48 mM (0.3 g l-1) of Triton X-100 completely inhibited fluoranthene and glucose mineralization and reduced cell culturability by 100% in 24 h. Electron micrographs indicate that Triton X-100 adversely affects the functioning of the cytoplasmic membrane. However, in the presence of 4.13 mM Ca2+-ions, Triton X-100 more than doubled the maximum fluoranthene mineralization rate and cell culturability was reduced by only 10%. In liquid cultures divalent ions, Ca2+ in particular and Mg2+ to a lesser extent, were thus shown to be essential for the surfactant-enhanced biodegradation of fluoranthene. Most likely the Ca2+-ions stabilized the cell membrane, making the cell less sensitive to Triton X-100. This is the first report on a specific factor which is important for successful surfactant-enhanced biodegradation of PAHs.

calcium fluoranthene fluoranthene membrane permeabilization polycyclic aromatic hydrocarbons Sphingomonas paucimobilis surfactant-enhanced biodegradation Triton X-100 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cerniglia CE & Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U (Ed) Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment (pp 41-68). CRC Press, Boca Raton, FL, USAGoogle Scholar
  2. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351-368Google Scholar
  3. Cote RJ & Gherna RL (1994) Nutrition and media. In: Gerhardt P, Murray RGE, Wood WA & Krieg NR (Ed) Methods for General and Molecular Bacteriology (pp 157-158). American Society of Microbiology, Washington D.C.Google Scholar
  4. DePamphilis ML & Adler J (1971) Attachment of flagellar basal bodies to the cell envelope: specific attachment to the outer lipopolysaccharide membrane and cytoplasmic membrane. J. Bacteriol. 105: 396-407PubMedGoogle Scholar
  5. Edward DA, Luthy RG & Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol. 25(1): 127-133Google Scholar
  6. Glauert AM (1980) Fixation, dehydration and embedding of biological specimens. In: Glauert AM (Ed) Practical Methods in Electron Microscopy, part 1 of vol 3. North-Holland Publishing Co. Amsterdam.Google Scholar
  7. Grimberg SJ, Nagel J & Aitken MD (1995) Kinetics of phenanthrene dissolution into water in the presence of nonionic surfactants. Environ. Sci. Technol. 29: 1480-1487Google Scholar
  8. Guerin WF & Jones GE (1988) Mineralization of phenanthrene by a Mycobacteriumsp. Appl. Environ. Microbiol. 54(4): 937-944PubMedGoogle Scholar
  9. Guha S & Jaffé PR (1996) Bioavailability of hydrophobic compounds partitioned into the micellar phase of non-ionic surfactants. Environ. Sci. Technol. 30(992): 1382-1391CrossRefGoogle Scholar
  10. Harms H & Zehnder AJB (1995) Bioavailability of Sorbed 3-chlorodibenzofuran. Appl. Environ. Microbiol. 61(1): 27-33Google Scholar
  11. Helenius A & Simons K (1975) Solubilization of membranes by detergents. Biochim. Biophys. Acta. 415: 29-79.PubMedGoogle Scholar
  12. Kawasaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K & Kawahara K (1994) The cell envelope structure of the lipopolysaccharide-lacking Gram negative bacterium Sphingomonas paucimobilis. J. Bacteriol. 176(2): 284-290PubMedGoogle Scholar
  13. Laha S & Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ. Sci. Technol. 25(11): 1921-1930Google Scholar
  14. Lantz S, Lin J-E, Mueller JG & Pritchard PH (1995) Effects of surfactants on fluoranthene mineralization by Sphingomonas paucimobilisstrain EPA505. In: Hinchee RE, Brockman FJ & Vogel CM (Ed) Microbial Processes for Bioremediation (pp 7-14). Battelle Press, Columbus, Ohio.Google Scholar
  15. Liu Z, Laha S & Luthy RG (1991) Surfactant solubilization of polycyclic aromatic hydrocarbon in soil-water suspensions. Wat. Sci. Technol. 23: 475-485Google Scholar
  16. Liu Z, Jacobson AM & Luthy RG (1995) Biodegradation of naphthalene in aqueous nonionic surfactants systems. Appl. Environ. Microbiol. vol 61(1): 145-151PubMedGoogle Scholar
  17. Mackay D & Shiu WY (1977). Aqueous solubility of polyaromatic hydrocarbons. J. Chem. Eng. Data. 22(4): 399-402.Google Scholar
  18. Mueller JG, Chapman PJ, Blattmann BO & Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56(4): 1079-1086.PubMedGoogle Scholar
  19. Reddy PG, Singh HD, Roy PK & Baruah JN (1982) Predominant role of hydrocarbon solubilization in the microbial uptake of hydrocarbons. Biotechnol. Bioeng. 24: 1241-1269.Google Scholar
  20. Rock F & Alexander M(1995) Biodegradation of hydrophobic compounds in the presence of surfactants. Environ. Toxicol. Chem. 14(7): 1151-1158.Google Scholar
  21. Rouse JD, Sabatini DA, Suflita JM & Harwell JH (1994) Influence of surfactants on microbial degradation of organic compounds. Critical Review in Environ. Sci, Technol. 24(4): 325-370.Google Scholar
  22. Schlegel HG (1993) General Microbiology Seventh Edition. Cambridge University Press.Google Scholar
  23. Schnaitman CA (1971a) Solubilization of the cytoplasmic membrane of Escherichia coliby Triton X-100. J. Bacteriol. 108(1): 545-552.PubMedGoogle Scholar
  24. Schnaitman CA (1971b) Effect of ethylenediaminetetraacetic acid, Triton X-100, and lysozyme on the morphology and chemical composition of isolated cell walls of Escherichia coli. J. Bacteriol. 108(1): 553-563.PubMedGoogle Scholar
  25. Sims RC & Overcach MR (1983) Polynuclears in soil-plant systems. Residue Review, 88: 1-68.Google Scholar
  26. Thibault SL, Anderson M & Frankenberger WT (1996) Influence of surfactants on pyrene desorption and degradation in soils. Appl. Environ. Microbiol. 62(1): 283-287.Google Scholar
  27. Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60(1): 258-263.PubMedGoogle Scholar
  28. Tsomides HJ, Hughes JB, Thomas JM & Ward CH (1995) Effect of surfactant addition on phenanthrene biodegradation in sediments. Environ. Tox. Chem. 14(6): 953-959.Google Scholar
  29. Vigon BW & Rubin AJ (1989) Practical consideration in the surfactant-aided mobilization of contaminants in aquifers. J. Water Pollut. Control Fed. 61(7): 1233-1240.Google Scholar
  30. Volkering F, Breure AM, van Andel JG & Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 61(5): 1699-1705.Google Scholar
  31. Weissenfels WD, Klewer H-J & Langhoff J (1992) Adsorption of polyaromatic hydrocarbons (PAH) by soil particles: influence on biodegradability and biotoxicity, Appl. Microbiol. Biotechnol. 36: 689-696.CrossRefPubMedGoogle Scholar
  32. Willumsen PA, Karlson U & Pritchard PH (1998) Response of fluoranthene degrading bacteria to surfactants. Appl. Microbiol. Biotechnol.: in press.Google Scholar
  33. Wilson SC & Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environmental Pollution, 81: 229-249.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Pia A. Willumsen
  • Ulrich Karlson

There are no affiliations available

Personalised recommendations