Journal of Biomolecular NMR

, Volume 14, Issue 4, pp 345–356 | Cite as

1H-15N NMR dynamic study of an isolated α-helical peptide (1–36)- bacteriorhodopsin reveals the equilibrium helix-coil transitions

  • Vladislav Yu. Orekhov
  • Dmitry M. Korzhnev
  • Tammo Diercks
  • Horst Kessler
  • Alexander S. Arseniev


The backbone dynamics of the bacteriorhodopsin fragment (1–36)BR solubilized in a 1:1 chloroform/methanol mixture were investigated by heteronuclear 1H-15N NMR spectroscopy. The heteronuclear 15N longitudinal and transverse relaxation rates and 15N{1H} steady-state NOEs were measured at three magnetic fields (11.7, 14.1, and 17.6 T). Careful statistical analysis resulted in the selection of the extended model-free form of the spectral density function [Clore et al. (1990) J. Am. Chem. Soc., 112, 4989–4991] for all the backbone amides of (1–36)BR. The peptide exhibits motions on the micro-, nano-, and picosecond time scales. The dynamics of the α-helical part of the peptide (residues 9–31) are characterised by nanosecond and picosecond motions with mean order parameters S s 2 = 0.60 and S f 2 = 0.84, respectively. The nanosecond motions were attributed to the peptide's helix-coil transitions in equilibrium. Residues 3–7 and 30–35 also exhibit motions on the pico- and nanosecond time scales, but with lower order parameters. Residue 10 at the beginning of the α-helix and residues 30–35 at the C-terminus are involved in conformational exchange processes on the microsecond time scale. The implications of the obtained results for the studies of helix-coil transitions and the dynamics of membrane proteins are discussed.

alpha helix anisotropy bacteriorhodopsin CSA hydrogen bond random coil relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam, A. (1961) The Principles of Nuclear Magnetism, Oxford University Press, London.Google Scholar
  2. Baldwin, R.L. (1989) Trends Biochem. Sci., 14, 291–294.Google Scholar
  3. Beloborodov, I.S., Orekhov, V. Yu. and Arseniev, A.S. (1998) J. Magn. Reson.., 132, 328–329.Google Scholar
  4. Bracken, C., Carr, P.A., Cavanagh, J. and Palmer, A.G. (1999) J.Mol. Biol., 285, 2133–2146.Google Scholar
  5. Chou, P.Y. and Scheraga, H.A. (1971) Biopolymers, 10, 657–680.Google Scholar
  6. Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990) J. Am. Chem. Soc., 112, 4989–4991.Google Scholar
  7. Cordier, F., Caffrey, M., Brutscher, B., Cusanovich, M.A., Marion,D. and Blackledge, M. (1998) J. Mol. Biol., 281, 341–361.Google Scholar
  8. Daggett, V. and Levitt, M. (1992) J. Mol. Biol., 223, 1121–1138.Google Scholar
  9. Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.Google Scholar
  10. Fushman, D. and Cowburn, D. (1998) J. Am. Chem. Soc., 120,7109–7110.Google Scholar
  11. Garcia de la Torre, J. and Bloomfield, V.A. (1981) Quart. Rev.Biophys., 14, 81–139.Google Scholar
  12. Gruenewald, B., Nicola, C.U., Lustig, A., Schwarz, G. and Klump, H. (1979) Biophys. Chem., 9, 137–147.Google Scholar
  13. Hirota, N., Mizuno, K. and Goto, Y. (1997) Protein Sci., 6, 416–421.Google Scholar
  14. Kahn, T.W. and Engelman, D.M. (1992) Biochemistry, 31, 6144–6151.Google Scholar
  15. Karplus, M. and Weaver, D.L. (1994) Protein Sci., 3, 650–668.Google Scholar
  16. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28,8972–8979.Google Scholar
  17. Korzhnev, D.M., Orekhov, V.Yu. and Arseniev, A.S. (1997) J. Magn.Reson., 127, 184–191.Google Scholar
  18. Korzhnev, D.M., Orekhov, V.Yu., Arseniev, A.S., Gratias, R. and Kessler, H. (1999) J. Phys. Chem. B, 103, 7036-7043.Google Scholar
  19. Korzhnev, D.M., Orekhov, V.Yu. and Arseniev, A.S. (1999b) J.Biomol. NMR, 14, 357–368.Google Scholar
  20. Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559.Google Scholar
  21. Luo, P. and Baldwin, R.L. (1997) Biochemistry, 36, 8413–8421.Google Scholar
  22. Mandel, A.M., Akke, M. and Palmer, A.G. (1995) J. Mol. Biol.,246, 144–163.Google Scholar
  23. Marti, T. (1998) J. Biol. Chem., 273, 9312–9322.Google Scholar
  24. Miick, S.M., Casteel, K.M. and Millhauser, G.L. (1993) Biochemistry,32, 8014–8021.Google Scholar
  25. Orekhov, V.Yu., Pervushin, K.V., Korzhnev, D.M. and Arseniev, A.S. (1995) J. Biomol. NMR,6, 113–122.Google Scholar
  26. Orekhov, V.Yu., Nolde, D.E., Golovanov, A.P., Korzhnev, D.M. and Arseniev, A.S. (1996) Appl. Magn. Reson., 9, 581–588.Google Scholar
  27. Palmer, A.G., Williams, J. and McDermott, A. (1996) J. Phys.Chem., 100, 13293–13310.Google Scholar
  28. Pervushin, K.V. and Arseniev, A.S. (1992) FEBS Lett., 308, 190–196.Google Scholar
  29. Pervushin, K.V., Orekhov, V.Yu., Popov, A.I., Musina, L.Yu. and Arseniev, A.S. (1994) Eur. J. Biochem., 219, 571–583.Google Scholar
  30. Pervushin, K.V. and Arseniev, A.S. (1995a) Bioorg. Khim.,21, 83-111.Google Scholar
  31. Pervushin, K.V., Orekhov, V.Yu., Korzhnev, D.M. and Arseniev, A.S. (1995b) J. Biomol. NMR, 5, 383–396.Google Scholar
  32. Phillips, C.M., Mizutani, Y. and Hochstrasser, R.M. (1995) Proc.Natl. Acad. Sci. USA, 92, 7292–7296.Google Scholar
  33. Popot, J.L., Gerchman, S.E. and Engelman, D.M. (1987) J. Mol.Biol., 198, 655–676.Google Scholar
  34. Reeves, L.W. (1975) In Dynamic Nuclear Magnetic ResonanceSpectroscopy(Eds. Jackman, L.M. and Cotton, F.A.), Academic Press, New York, NY, pp. 83–130.Google Scholar
  35. Scholtz, J.M. and Baldwin, R.L. (1992) Annu. Rev. Biophys. Biomol.Struct., 21, 95–118.Google Scholar
  36. Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn.Reson., A105, 211–224.Google Scholar
  37. Thompson, P.A., Eaton, W.A. and Hofrichter, J. (1997) Biochemistry,36, 2200–9210.Google Scholar
  38. Tjandra, N., Wingfield, P., Stahl, S. and Bax, A. (1996) J. Biomol.NMR, 8, 273–284.Google Scholar
  39. Van Geet, A.L. (1970) Anal. Chem., 42, 679–680.Google Scholar
  40. Williams, S., Causgrove, T.P., Gilmanshin, R., Fang, K.S., Callender,R.H., Woodruff, W.H. and Dyer, R.B. (1996) Biochemistry, 35, 691–697.Google Scholar
  41. Woessner, D.E. (1962) J. Chem. Phys., 37, 647–654.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Vladislav Yu. Orekhov
    • 1
  • Dmitry M. Korzhnev
    • 1
  • Tammo Diercks
    • 2
  • Horst Kessler
    • 2
  • Alexander S. Arseniev
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institut für Organische Chemie und BiochemieTechnische Universität MünchenGarchingGermany

Personalised recommendations