Journal of Global Optimization

, Volume 16, Issue 4, pp 371–392 | Cite as

Multisection in Interval Branch-and-Bound Methods for Global Optimization – I. Theoretical Results

  • András Erik Csallner
  • Tibor Csendes
  • Mihály Csaba markót


We have investigated variants of interval branch-and-bound algorithms for global optimization where the bisection step was substituted by the subdivision of the current, actual interval into many subintervals in a single iteration step. The convergence properties of the multisplitting methods, an important class of multisection procedures are investigated in detail. We also studied theoretically the convergence improvements caused by multisection on algorithms which involve the accelerating tests (like e.g. the monotonicity test). The results are published in two papers, the second one contains the numerical test result.

Branch-and-bound method Global optimization Interval arithmetic Multisection Accelerating devices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alefeld, G. and Herzberger, J. (1983), Introduction to Interval Computations. Academic Press, New York.Google Scholar
  2. 2.
    Berner, S. (1995), Ein paralleles Verfahren zur verifizierten globalen Optimierung. Dissertation, Universität Wuppertal.Google Scholar
  3. 3.
    Berner, S. (1966), New results on verified global optimization, Computing 57: 323–343.Google Scholar
  4. 4.
    Casado, L.G., García, I. and Csendes, T., Adaptive Multisection in Interval Methods for Global Optimization, submitted for publication (available at http: / / Scholar
  5. 5.
    Casado, L.G., García, I. and Csendes, T., A Heuristic Rejection Criterion in Interval Global Optimization Algorithms, submitted for publication (available at http: / / Scholar
  6. 6.
    Csallner, A.E. (1993), Global optimization in separation network synthesis, Hungarian J. Industrial Chemistry 21: 303–308.Google Scholar
  7. 7.
    Csallner, A.E. and Csendes, T. (1996), On the convergence speed of interval methods for global optimization, Computers, Mathematics and Applications 31: 173–178.Google Scholar
  8. 8.
    Csendes, T. and Pintér, J. (1993), The impact of accelerating tools on the interval subdivision algorithm for global otimization, European J. of Operational Research 65: 314–320.Google Scholar
  9. 9.
    Csendes, T. and Ratz, D. (1997), Subdivision direction selection in interval methods for global optimization, SIAM J. Numerical Analysis 34: 922–938.Google Scholar
  10. 10.
    Hansen, E. (1992), Global optimization using interval analysis. Marcel Dekker, New York.Google Scholar
  11. 11.
    Hansen, P., Jaumard, B. and Xiong, J. (1994), Cord-Slope Form of Taylor's Expansion in Univariate Global Optimization, J. Optimization Theory and Applications 80: 441–464.Google Scholar
  12. 12.
    Ichida, K. and Fujii, Y. (1979), An interval arithmetic method for global otimization. Computing 23: 85–97.Google Scholar
  13. 13.
    Kearfott, R.B. (1996), Test results for an interval branch and bound algorithm for equalityconstrained optimization. In: Floudas, C.A. and Pardalos, P.M. (eds.), State of the Art in Global Optimization. Kluwer, Dordrecht, 181–199.Google Scholar
  14. 14.
    Kearfott, R.B. (1996), Rigorous global search: continuous problems. Kluwer, Dordrecht.Google Scholar
  15. 15.
    Krawczyk, R. and Neumaier, A. (1985), Interval Slopes for Rational Functions and Associated Centered Forms, SIAM J. Numerical Analysis 22: 604–616.Google Scholar
  16. 16.
    Markót, M.Cs., Csendes, T. and Csallner, A.E., Multisection in Interval Branch-and-Bound Methods for Global Optimization II. Numerical Tests. Submitted for publication (available at Scholar
  17. 17.
    Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization. Ellis Horwood, Chichester.Google Scholar
  18. 18.
    Ratschek, H. and Rokne, J. (1993), Interval Methods, In: Horst R. and Pardalos P.M. (eds.), Handbook of Global Optimiation, Kluwer, Dordrecht, 751–828.Google Scholar
  19. 19.
    Ratz, D. (1992), Automatische Ergebnisverifikation bei globalen Optimierungsproblemen. Dissertation, Univesität Karlsruhe.Google Scholar
  20. 20.
    Ratz, D. and Csendes, T. (1995), On the selection of subdivision directions in interval branch-and-bound methods for global optimization, J. Global Optimization 7, 183–207.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • András Erik Csallner
    • 1
  • Tibor Csendes
    • 2
  • Mihály Csaba markót
    • 3
  1. 1.Department of Computer ScienceJuhász Gyula Teachers Training CollegeSzegedHungary
  2. 2.Department of Applied InformaticsJózsef Attila UniversitySzegedHungary
  3. 3.Institute of InformaticsJózsef Attila UniversitySzegedHungary

Personalised recommendations