Journal of Logic, Language and Information

, Volume 8, Issue 3, pp 265–271 | Cite as

Editorial: Efficacy of Diagrammatic Reasoning

  • Oliver Lemon
  • Maarten de Rijke
  • Atsushi Shimojima
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagrow, L. and Skelton, R.A., 1964, History of Cartography, London: C.A. Watts and Co.Google Scholar
  2. Barker-Plummer, D. and Bailin, S.C., 1997, “The role of diagrams in mathematical proofs,” Machine GRAPHICS and VISION 6(1), 25–56 (special issue on “Diagrammatic Representation and Reasoning”).Google Scholar
  3. Barwise, J. and Etchemendy, J., 1995, “Heterogeneous logic,” pp. 209–232 in Diagrammatic Reasoning: Cognitice and Computational Perspectives, J. Glasgow, N.H. Narayanan, and B. Chandrasekaran, eds., Cambridge, MA: AAAI Press/The MIT Press.Google Scholar
  4. Barwise, J. and Shimojima, A., 1995, “Surrogate reasoning,” Cognitive Studies: Bulletin of Japanese Cognitive Science Society 4(2), 7–27.Google Scholar
  5. Cheng, P.C.-H., 1996, “Scientific discovery with law-encoding diagrams,” Creativity Research Journal 9(2/3), 145–162.Google Scholar
  6. Cummins, R., 1996, Representations, Targets, and Attitudes, Cambridge, MA: The MIT Press.Google Scholar
  7. Dretske, F., 1981, Knowledge and the Flow of Information, Cambridge, MA: Bradford/The MIT Press.Google Scholar
  8. Eggleston, H.G., 1969, Convexity, Cambridge: Cambridge University Press.Google Scholar
  9. Euler, L., 1768, Lettres à une princesse d'Allemagne, St. Petersburg: L'Académie Impériale des Sciences.Google Scholar
  10. Funt, B.V., 1980, “Problem-solving with diagrammatic representations,” Artificial Intelligence 13, 201–230.Google Scholar
  11. Gärdenfors, P.: 1996, “Mental representation, conceptual spaces, and metaphors,” Synthese 106, 21–47.Google Scholar
  12. Gelernter, H., 1959, “Realization of a geometry-theorem proving machine,” pp. 134–152 in Computers and Thought, E.A. Feigenbaum and J. Feldman, eds., New York: McGraw-Hill.Google Scholar
  13. Gooday, J. and Cohn, A., 1996, “Using spatial logic to describe visual languages,” Artificial Intelligence Review 10, 171–186.Google Scholar
  14. Goodman, N., 1968, Languages of Art: An Approach to a Theory of Symbols, London: Oxford University Press.Google Scholar
  15. Grigni, M., Papadias, D., and Papadimitriou, C., 1995, “Topological inference,” pp. 901–906 in International Joint Conference on Artificial Intelligence (IJCAI' 95), C.S. Mellish, ed., Morgan Kaufmann.Google Scholar
  16. Hammer, E.M., 1995, Logic and Visual Information, Studies in Logic, Language, and Information, Stanford, CA: CSLI Publications and FoLLI.Google Scholar
  17. Harel, D., 1988, “On visual formalisms,” Communications of the ACM 31(5), 514–530.Google Scholar
  18. Howell, R., 1976, “Ordinary pictures, mental representations, and logical forms,” Synthese 33, 149–174.Google Scholar
  19. Jamnik, M., Bundy, A., and Green, I., 1999, “On automating diagrammatic proofs of arithmetic arguments,” Journal of Logic, Language, and Information, this issue.Google Scholar
  20. Kosslyn, S.M., 1994, Image and Brain: The Resolution of the Imagery Debate, Cambridge, MA: The MIT Press.Google Scholar
  21. Larkin, J. and Simon, H., 1987, “Why a diagram is (sometimes) worth 10,000 words,” Cognitive Science 11 65–99.Google Scholar
  22. Lemon, O. and Pratt, I., 1997a, “Logical and diagrammatic reasoning: The complexity of conceptual space,” pp. 430–435 in 19th Annual Conference of the Cognitive Science Society, M. Shafto and P. Langley, eds., New Jersey: Lawrence Erlbaum Associates.Google Scholar
  23. Lemon, O. and Pratt, I., 1997b, “Spatial logic and complexity of diagrammatic reasoning,” Machine GRAPHICS and VISION 6(1), 89–108 (special issue on “Diagrammatic Representation and Reasoning”).Google Scholar
  24. Lemon, O. and Pratt, I., 1999, “On the insufficiency of linear diagrams for syllogisms,” Notre Dame Journal of Formal Logic, to appear.Google Scholar
  25. Levesque, H.J., 1988, “Logic and the complexity of reasoning,” Journal of Philosophical Logic 17, 355–389.Google Scholar
  26. Peirce, C.S., 1933, Collected Papers, Cambridge, MA: Harvard University Press.Google Scholar
  27. Pylyshyn, Z.W., 1981, “Imagery and artificial intelligence,” pp. 170–196 in Readings in Philosophy of Psychology, Vol. 2, N. Block, ed., Cambridge, MA: Harvard University Press.Google Scholar
  28. Russell, B., 1923, “Vagueness,” pp. 145–154 in Essays on Language, Mind, and Matter 1912-26, The Collected Papers of Bertrand Russell, J. Slater, ed., London: Unwin Hyman.Google Scholar
  29. Shimojima, A., 1996, “On the efficacy of representation,” Ph.D. Thesis, Indiana University.Google Scholar
  30. Shin, S.-J., 1995, The Logical Status of Diagrams, Cambridge: Cambridge University Press.Google Scholar
  31. Sowa, J.F., 1984, Conceptual Structures: Information Processing on Mind and Machine, London: Addison Wesley.Google Scholar
  32. Stenning, K. and Lemon, O., 1999, “Aligning logical and psychological perspectives on diagrammatic reasoning,” Artificial Intelligence Review, to appear.Google Scholar
  33. Stenning, K. and Oberlander, J., 1995, “A cognitive theory of graphical and linguistic reasoning: Logic and implementation,” Cognitive Science 19(1), 97–140.Google Scholar
  34. Venn, J., 1881, Symbolic Logic, London: MacMillan.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Oliver Lemon
    • 1
  • Maarten de Rijke
    • 2
  • Atsushi Shimojima
    • 3
  1. 1.Department of Computer ScienceTrinity CollegeDublinIreland (E-mail
  2. 2.ILLC, University of AmsterdamAmsterdamThe Netherlands (E-mail
  3. 3.Japan Advanced Institute of Science and TechnologyAsahidai, Tatsunokuchi, IshikawaJapan (E-mail

Personalised recommendations