Celestial Mechanics and Dynamical Astronomy

, Volume 77, Issue 2, pp 77–91

The Inverse Problem for Collinear Central Configurations

  • Alain Albouy
  • Richard Moeckel
Article

Abstract

We consider the problem: given a collinear configuration of n bodies, find the masses which make it central. We prove that for n ≤ 6, each configuration determines a one-parameter family of masses (after normalization of the total mass). The parameter is the center of mass when n is even and the square of the angular velocity of the corresponding circular periodic orbit when n is odd. The result is expected to be true for any n.

inverse problem n-body problem central configuration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laplace, P. S.: Sur quelques points du système du monde, Mémoires de l'Académie royale des Sciences de Paris (1789) article XXIII ou æuvres complètes, vol. 11, p. 553.Google Scholar
  2. 2.
    Moulton, F. R.: The straight line solutions of the problem of N bodies, Ann. Math. 2(12) (1910), 1-17 (or in his book Periodic Orbits, published by the Carnegie Institution of Washington, 1920, pp. 285-298.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    O'Neil, K.: Stationary configurations of point vortices, Trans. Amer. Math. Soc. 302(2) (1987), 383-425.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Marchal, C.: The Three-Body Problem, Elsevier, Amsterdam, 1990, p. 44.MATHGoogle Scholar
  5. 5.
    Dziobek, O.: Mathematical Theories of Planetary Motions, (German original, 1888, translation 1892) Dover, 1962, p. 70.Google Scholar
  6. 6.
    MacMillan, W. D. and Bartky, W.: Permanent configurations in the problem of four bodies, Trans. Amer. Math. Soc. 34 (1932), 838-875.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Williams, W. L.: Permanent configurations in the problem of five bodies, Trans. Amer. Math. Soc. 44 (1938), 563-579.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Wintner, A.: The Analytical Foundations of Celestial Mechanics, Princeton Math. Series 5, Princeton University Press, Princeton, NJ, 1941.MATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Alain Albouy
    • 1
  • Richard Moeckel
    • 2
  1. 1.Astronomie et Systèmes DynamiquesInstitut de MécaniqueParisFrance
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolisU.S.A.

Personalised recommendations