Journal of Biomolecular NMR

, Volume 16, Issue 4, pp 313–327 | Cite as

Probing hydrogen bonds in the antibody-bound HIV-1 gp120 V3 loop by solid state NMR REDOR measurements

  • John J. Balbach
  • Jun Yang
  • David P. Weliky
  • Peter J. Steinbach
  • Vitali Tugarinov
  • Jacob Anglister
  • Robert Tycko


We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5β, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with 15N labels at the η nitrogen positions of arginine side chains and 13C labels at glycine carbonyl positions and 13C-detected 13C-15N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82–85], but is shown by the REDOR measurements to be absent in the RP135/0.5β complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of φ and Ψ backbone dihedral angles in the RP135/0.5β complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect 13C-15N dipole–dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141–145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331–335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations.

HIV-1 peptide/antibody complex solid state NMR V3 loop 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R.C., Gullion, T., Joers, J.M., Shapiro, M., Villhauer, E.B. and Weber, H.P. (1995) J. Am. Chem. Soc., 117, 10546–10550.Google Scholar
  2. Atherton, E. and Sheppard, R.C. (1989) In Solid Phase Peptide Synthesis. Practical Approach Series (Rickwood, D. and Hames, B.D., Eds.), IRL Press, New York, NY.Google Scholar
  3. Bazan, H.A., Alkhatib, G., Broder, C.C. and Berger, E.A. (1998) J. Virol., 72, 4485–4491.PubMedGoogle Scholar
  4. Bennett, A.E., Ok, J.H., Griffin, R.G. and Vega, S. (1992) J. Chem. Phys., 96, 8624–8627.Google Scholar
  5. Bennett, A.E., Rienstra, C.M., Griffiths, J.M., Zhen, W.G., Lansbury, P.T. and Griffin, R.G. (1998a) J. Chem. Phys., 108, 9463–9479.Google Scholar
  6. Bennett, A.E., Weliky, D.P. and Tycko, R. (1998b) J. Am. Chem. Soc., 120, 4897–4898.Google Scholar
  7. Berger, E.A., Murphy, P.M. and Farber, J.M. (1999) Annu. Rev. Immunol., 17, 657–700.PubMedGoogle Scholar
  8. Brünger, A.T. (1992) XPLOR. A System for X-ray Crystallography and NMR, Yale University Press, New Haven, CT.Google Scholar
  9. Campbell, A.P., Sykes, B.D., Norrby, E., AssaMunt, N. and Dyson, H.J. (1996) Fold. Des., 1, 157–165.PubMedGoogle Scholar
  10. Chandrasekhar, K., Profy, A.T. and Dyson, H.J. (1991) Biochemistry, 30, 9187–9194.Google Scholar
  11. Chang, C.D., Waki, M., Ahmad, M., Meienhofer, J., Lundell, E.O. and Haug, J.D. (1980) Int. J. Pept. Protein Res., 15, 59–66.PubMedGoogle Scholar
  12. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P.D., Wu, L.J., Mackay, C.R., LaRosa, G., Newman, W., Gerard, N., Gerard, C. and Sodroski, J. (1996) Cell, 85, 1135–1148.PubMedGoogle Scholar
  13. Cocchi, F., DeVico, A.L., GarzinoDemo, A., Cara, A., Gallo, R.C. and Lusso, P. (1996) Nat. Med., 2, 1244–1247.PubMedGoogle Scholar
  14. Dragic, T., Trkola, A., Lin, S.W., Nagashima, K.A., Kajumo, F., Zhao, L., Olson, W.C., Wu, L.J., Mackay, C.R., Allaway, G.P., Sakmar, T.P., Moore, J.P. and Maddon, P.J. (1998) J. Virol., 72, 279–285.PubMedGoogle Scholar
  15. Freed, E.O., Myers, D.J. and Risser, R. (1991) J. Virol., 65, 190–194.PubMedGoogle Scholar
  16. Garbow, J.R. and Gullion, T. (1991) J. Magn. Reson., 95, 442–445.Google Scholar
  17. Ghiara, J.B., Ferguson, D.C., Satterthwait, A.C., Dyson, H.J. and Wilson, I.A. (1997) J. Mol. Biol., 266, 31–39.PubMedGoogle Scholar
  18. Ghiara, J.B., Stura, E.A., Stanfield, R.L., Profy, A.T. and Wilson, I.A. (1994) Science, 264, 82–85.PubMedGoogle Scholar
  19. Gullion, T., Baker, D.B. and Conradi, M.S. (1990) J. Magn. Reson., 89, 479–484.Google Scholar
  20. Gullion, T. and Schaefer, J. (1989) J. Magn. Reson., 81, 196–200.Google Scholar
  21. Gullion, T. and Schaefer, J. (1991) J. Magn. Reson., 92, 439–442.Google Scholar
  22. Gullion, T. and Vega, S. (1992) Chem. Phys. Lett., 194, 423–428.Google Scholar
  23. Gupta, G., Anantharamaiah, G.M., Scott, D.R., Eldridge, J.H. and Myers, G. (1993) J. Biomol. Struct. Dyn., 11, 345–366.PubMedGoogle Scholar
  24. Hansen, J.E., Lund, O., Nielsen, J.O., Brunak, S. and Hansen, J.E.S. (1996) Proteins, 25, 1–11.PubMedGoogle Scholar
  25. Huang, X.L., Smith, M.C., Berzofsky, J.A. and Barchi, J.J. (1996) FEBS Lett., 393, 280–286.PubMedGoogle Scholar
  26. Javaherian, K., Langlois, A.J., Larosa, G.J., Profy, A.T., Bolognesi, D.P., Herlihy, W.C., Putney, S.D. and Matthews, T.J. (1990) Science, 250, 1590–1593.PubMedGoogle Scholar
  27. Javaherian, K., Langlois, A.J., McDanal, C., Ross, K.L., Eckler, L.I., Jellis, C.L., Profy, A.T., Rusche, J.R., Bolognesi, D.P., Putney, S.D. and Matthews, T.J. (1989) Proc. Natl. Acad. Sci. USA, 86, 6768–6772.PubMedGoogle Scholar
  28. Jelinek, R., Terry, T.D., Gesell, J.J., Malik, P., Perham, R.N. and Opella, S.J. (1997) J. Mol. Biol., 266, 649–655.PubMedGoogle Scholar
  29. Kliks, S.C., Shioda, T., Haigwood, N.L. and Levy, J.A. (1993) Proc. Natl. Acad. Sci. USA, 90, 11518–11522.PubMedGoogle Scholar
  30. Kraulis, P.J. (1991) J. Appl. Crystallogr., 24, 946–950.Google Scholar
  31. Kuszewski, J., Nilges, M. and Brünger, A.T. (1992) J. Biomol. NMR, 2, 33–56.PubMedGoogle Scholar
  32. Kwong, P.D., Wyatt, R., Robinson, J., Sweet, R.W., Sodroski, J. and Hendrickson, W.A. (1998) Nature, 393, 648–659.PubMedGoogle Scholar
  33. Larosa, G.J., Davide, J.P., Weinhold, K., Waterbury, J.A., Profy, A.T., Lewis, J.A., Langlois, A.J., Dreesman, G.R., Boswell, R.N., Shadduck, P., Holley, L.H., Karplus, M., Bolognesi, D.P., Matthews, T.J., Emini, E.A. and Putney, S.D. (1990a) Science, 249, 932–935.PubMedGoogle Scholar
  34. Larosa, G.J., Javaherian, K., Profy, A., Rusche, J., Weinhold, K., Langlois, A., Matthews, T., Bolognesi, D., Emini, E., Gallo, R., Putney, S. and Wongstaal, F. (1990b) Aids Res. Hum. Retrovir., 6, 30–31.Google Scholar
  35. Long, H.W. and Tycko, R. (1998) J. Am. Chem. Soc., 120, 7039–7048.Google Scholar
  36. Marqusee, S. and Baldwin, R.L. (1987) Proc. Natl. Acad. Sci. USA, 84, 8898–8902.PubMedGoogle Scholar
  37. Marqusee, S., Robbins, V.H. and Baldwin, R.L. (1989) Proc. Natl. Acad. Sci. USA, 86, 5286–5290.PubMedGoogle Scholar
  38. Matsushita, S., Robertguroff, M., Rusche, J., Koito, A., Hattori, T., Hoshino, H., Javaherian, K., Takatsuki, K. and Putney, S. (1988) J. Virol., 62, 2107–2114.PubMedGoogle Scholar
  39. Merritt, E.A. and Bacon, D.J. (1997) Methods Enzymol., 277, 505–524.Google Scholar
  40. Nilges, M., Clore, G.M. and Gronenborn, A.M. (1988) FEBS Lett., 229, 317–324.PubMedGoogle Scholar
  41. Nilges, M., Kuszewski, J. and Brünger, A.T. (1991) In Computational Aspects of the Study of Biological Macromolecules by NMR Spectroscopy (Hoch, J.C., Poulsen, F.M. and Redfield, C., Eds.), Plenum Press, New York, NY.Google Scholar
  42. Pan, Y., Gullion, T. and Schaefer, J. (1990) J. Magn. Reson., 90, 330–340.Google Scholar
  43. Putney, S.D., Javaherian, K.J., Larosa, G.J., Emilio, E.A., Lewis, J.A., Langlois, A.J., Bolognesi, D.P. and Matthews, T.J. (1991) Aids Res. Hum. Retrovir., 7, 145.Google Scholar
  44. Rini, J.M., Stanfield, R.L., Stura, E.A., Salinas, P.A., Profy, A.T. and Wilson, I.A. (1993) Proc. Natl. Acad. Sci. USA, 90, 6325–6329.PubMedGoogle Scholar
  45. Rizzuto, C.D., Wyatt, R., Hernandez-Ramos, N., Sun, Y., Kwong, P.D., Hendrickson, W.A. and Sodroski, J. (1998) Science, 280, 1949–1953.PubMedGoogle Scholar
  46. Rusche, J.R., Javaherian, K., McDanal, C., Petro, J., Lynn, D.L., Grimaila, R., Langlois, A., Gallo, R.C., Arthur, L.O., Fischinger, P.J., Bolognesi, D.P., Putney, S.D. and Matthews, T.J. (1988) Proc. Natl. Acad. Sci. USA, 85, 3198–3202.PubMedGoogle Scholar
  47. Sarma, A.V.S., Raju, T.V. and Kunwar, A.C. (1997) J. Biochem. Biophys. Methods, 34, 83–98.PubMedGoogle Scholar
  48. Shioda, T., Levy, J.A. and Chengmayer, C. (1992) Proc. Natl. Acad. Sci. USA, 89, 9434–9438.PubMedGoogle Scholar
  49. Stanfield, R.L., Cabezas, E., Satterthwait, A.C., Stura, E.A., Profy, A.T. and Wilson, I.A. (1999) Struct. Fold. Des., 7, 131–142.Google Scholar
  50. Stura, E.A., Stanfield, R.L., Fieser, G.G., Silver, S., Roguska, M., Hincapie, L.M., Simmerman, H.K.B., Profy, A.T. and Wilson, I.A. (1992) Proteins, 14, 499–508.PubMedGoogle Scholar
  51. Trkola, A., Dragic, T., Arthos, J., Binley, J.M., Olson, W.C., Allaway, G.P., ChengMayer, C., Robinson, J., Maddon, P.J. and Moore, J.P. (1996) Nature, 384, 184–187.PubMedGoogle Scholar
  52. Tsang, P., Mu, X.Y., Wu, G. and Durda, P.J. (1997) J. Mol. Recogn., 10, 256–261.Google Scholar
  53. Tugarinov, V., Zvi, A., Levy, R. and Anglister, J. (1999) Nat. Struct. Biol., 6, 331–335.PubMedGoogle Scholar
  54. Tycko, R., Weliky, D.P. and Berger, A.E. (1996) J. Chem. Phys., 105, 7915–7930.Google Scholar
  55. Vranken, W.F., Budesinsky, M., Martins, J.C., Fant, F., Boulez, K., Gras-Masse, H. and Borremans, F.A.M. (1996) Eur. J. Biochem., 236, 100–108.PubMedGoogle Scholar
  56. Vu, H.M., deLorimier, R., Moody, M.A., Haynes, B.F. and Spicer, L.D. (1996) Biochemistry, 35, 5158–5165.PubMedGoogle Scholar
  57. Vu, H.M., Myers, D., de Lorimier, R., Matthews, T.J., Moody, M.A., Heinly, C., Torres, J.V., Haynes, B.F. and Spicer, L. (1999) J. Virol., 73, 746–750.PubMedGoogle Scholar
  58. Weliky, D.P., Bennett, A.E., Zvi, A., Anglister, J., Steinbach, P.J. and Tycko, R. (1999) Nat. Struct. Biol., 6, 141–145.PubMedGoogle Scholar
  59. Weliky, D.P. and Tycko, R. (1996) J. Am. Chem. Soc., 118, 8487–8488.Google Scholar
  60. White-Scharf, M.E., Potts, B.J., Smith, L.M., Sokolowski, K.A., Rusche, J.R. and Silver, S. (1993) Virology, 192, 197–206.PubMedGoogle Scholar
  61. Wu, L.J., Gerard, N.P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A.A., Desjardin, E., Newman, W., Gerard, C. and Sodroski, J. (1996) Nature, 384, 179–183.PubMedGoogle Scholar
  62. Wu, L.J., LaRosa, G., Kassam, N., Gordon, C.J., Heath, H., Ruffing, N., Chen, H., Humblias, J., Samson, M., Parmentier, M., Moore, J.P. and Mackay, C.R. (1997) J. Exp. Med., 186, 1373–1381.PubMedGoogle Scholar
  63. Wyatt, R., Kwong, P.D., Desjardins, E., Sweet, R.W., Robinson, J., Hendrickson, W.A. and Sodroski, J.G. (1998) Nature, 393, 705–711.PubMedGoogle Scholar
  64. Zvi, A. and Anglister, J. (1998) Lett. Pept. Sci., 5, 357–364.Google Scholar
  65. Zvi, A., Feigelson, D.J., Hayek, Y. and Anglister, J. (1997) Biochemistry, 36, 8619–8627.PubMedGoogle Scholar
  66. Zvi, A., Kustanovich, I., Hayek, Y., Matsushita, S. and Anglister, J. (1995) FEBS Lett., 368, 267–270.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • John J. Balbach
    • 1
  • Jun Yang
    • 2
  • David P. Weliky
    • 2
  • Peter J. Steinbach
    • 3
  • Vitali Tugarinov
    • 4
  • Jacob Anglister
    • 4
  • Robert Tycko
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaU.S.A.
  2. 2.Department of ChemistryMichigan State UniversityEast LansingU.S.A.
  3. 3.Center for Molecular Modeling, Center for Information TechnologyNational Institutes of HealthBethesdaU.S.A.
  4. 4.Department of Structural BiologyWeizmann Institute of ScienceRehovothIsrael

Personalised recommendations