Journal of Global Optimization

, Volume 18, Issue 2, pp 107–128 | Cite as

Finite Exact Branch-and-Bound Algorithms for Concave Minimization over Polytopes

  • Marco Locatelli
  • Nguyen V. Thoai


In this paper simplicial branch-and-bound algorithms for concave minimization problems are discussed. Some modifications of the basic algorithm are presented, mainly consisting in rules to start local searches, introduction of cuts and updates of the original objective function. While some of these tools are not new in the literature, it is the first time, to the authors' knowledge, that they are used to guarantee the finiteness of a simplicial branch-and-bound approach.

Concave minimization problems Branch-and-bound Local searches Concavity cuts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benson, H.P. (1985) A finite algorithm for concave minimization over a polyhedron, Naval Research Logistics Quarterly 32: 165-177.Google Scholar
  2. 2.
    Benson, H.P. and Sayin, S. (1994) A finite concave minimization algorithm using branch and bound and neighbor generation, Journal of Global Optimization, 5: 1-14.Google Scholar
  3. 3.
    Benson, H.P. (1995) Concave minimization: theory, applications and algorithms in R. Horst, P. Pardalos (eds.), Handbook of Global Optimization, pp. 43-148, Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  4. 4.
    Hamami M., Jacobsen S.E., (1988) Exhaustive nondegenerate conical processes for concave minimization on convex polytopes, Mathematics of Operations Research 13, 479-487.Google Scholar
  5. 5.
    Horst R., (1976) An algorithm for nonconvex programming problems, Mathematical Programming 10: 312-321.Google Scholar
  6. 6.
    Horst R., (1984) On the global minimization of concave functions. Introduction and survey, Operations Research Spektrum 6: 195-205.Google Scholar
  7. 7.
    Horst R., Thoai N.V., (1988) Modification, implementation and comparison of three algorithms for globally solving concave minimization problems, Computing, 42: 271-289Google Scholar
  8. 8.
    Horst R., Pardalos P.M. and Thoai N.V., (1995) 'Introduction to global optimization', Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  9. 9.
    Horst R. and Tuy H., (1996) Global optimization: deterministic approaches, (third edition), Springer-Verlag Berlin Heidelberg New York (1996)Google Scholar
  10. 10.
    Nast M., (1996) Subdivision of simplices relative to a cutting plane and finite concave minimization, Journal of Global Optimization, 9: 65-93Google Scholar
  11. 11.
    Papadimitriou C.H., Steiglitz K., (1982) Combinatorial optimization: algorithms and complexity, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.Google Scholar
  12. 12.
    Pardalos P.M., Rosen J.B., (1986) Methods for global concave optimization: a bibliographic survey, SIAM Review 26, 367-379.Google Scholar
  13. 13.
    Pardalos P.M., Schnitger G., (1988) Checking local optimality in constrained quadratic programming is NP-hard, Operations Research Letters, 7: 33-35.Google Scholar
  14. 14.
    Shectman J.P., Sahinidis N.V., (1998) A finite algorithm for global minimization of separable concave function, Journal of Global Optimization 12: 1-36Google Scholar
  15. 15.
    Tam B.T., Ban V.T., (1985) Minimization of a concave function under linear constraints, Economika i Mathematicheskie Metody 21: 709-714, in RussianGoogle Scholar
  16. 16.
    Tuy, H. (1991) Concave programming under linear constraints, Soviet Mathematics 5: 1437-1440Google Scholar
  17. 17.
    Tuy, H. Effect of the subdivision strategy on convergence and efficiency of some global optimization algorithms, Journal of Global Optimization, 1: 23-36Google Scholar
  18. 18.
    Tuy, H. (1991) Normal conical algorithmfor concave minimization over polytopes, Mathematical Programming 51: 229-245Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Marco Locatelli
    • 1
    • 2
  • Nguyen V. Thoai
    • 1
  1. 1.Dipartimento di Sistemi e InformaticaUniversitá degli Studi di FirenzeFirenzeItaly
  2. 2.Department of MathematicsUniversity of TrierTrierGermany

Personalised recommendations