Designs, Codes and Cryptography

, Volume 21, Issue 1–3, pp 41–67 | Cite as

The Newton Polygon of Plane Curves with Many Rational Points

  • Peter Beelen
  • Ruud Pellikaan


Data Structure Information Theory Rational Point Discrete Geometry Plane Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Abhyankar, Irreducibility criterion for germs of analytic functions of two complex variables, Advances in Math., Vol. 4 (1989) pp. 190–257.Google Scholar
  2. 2.
    H. F. Baker, Examples of applications of Newton' polygon to the theory of singular points of algebraic functions, Trans. Cambridge Phil. Soc., Vol. 15 (1893) pp. 403–450.Google Scholar
  3. 3.
    P. H. T. Beelen, Error-correcting codes and algebraic geometry, Master' Thesis, Univ. Utrecht, August (1997).Google Scholar
  4. 4.
    H. Bennama and P. Carbonne, Courbes X m Y n + Y m Z n + Z m X n = 0 et decomposition de la Jacobienne, Journ. Alg., Vol. 188 (1997) pp. 409–417.Google Scholar
  5. 5.
    R. E. Blahut, On epicyclic Hermitian codes, Proc. IEEE 98 Inform. TheoryWorkshop, Killarney, June 22–26 (1998) p. 28.Google Scholar
  6. 6.
    R.-O. Buchweitz and G.-M. Gruel, The Milnor number and deformations of complex curve singularities, Inventiones Math., Vol. 58 (1980) pp. 241–281.Google Scholar
  7. 7.
    S. Gao, Irreducibility of multivariate polynomials via Newton polytopes, preprint January (1998).Google Scholar
  8. 8.
    A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, Journ. Number Theory, Vol. 61 (1996) pp. 248–273.Google Scholar
  9. 9.
    A. Garcia and H. Stichtenoth, A class of polynomials over finite fields, preprint (1999).Google Scholar
  10. 10.
    G. van der Geer and M. van der Vlugt, Tables for the function Nq (g). Regularly updated tables are available at” geer/.Google Scholar
  11. 11.
    G. van der Geer and M. van der Vlugt, Kummer covers with many points, preprint September (1999).Google Scholar
  12. 12.
    V. D. Goppa, Codes on algebraic curves, Sov. Math. Dokl., Vol. 24 (1981) pp. 170–172.Google Scholar
  13. 13.
    G.-M. Gruel and H. Kröning, Simple singularities in positive characteristic, Math Zeitschrift, Vol. 203 (1990) pp. 339–354.Google Scholar
  14. 14.
    G. Haché and D. Le Brigand, Effective construction of algebraic geometry codes, IEEE Trans. Inform. Theory, Vol. 41, Nov. (1995) pp. 1615–1628.Google Scholar
  15. 15.
    J. P. Hansen and H. Stichtenoth, Group codes on certain algebraic curves with many rational points, AAECC, Vol. 1 (1990) pp. 67–77.Google Scholar
  16. 16.
    R. Hartshorne, Algebraic geometry, Grad. Texts Math, Springer-Verlag, New York, Vol. 52 (1977).Google Scholar
  17. 17.
    H. Hironaka, On the arithmetic genera and the effective genera of algebraic curves, Mem. Coll. Sci. Univ. of Kyoto, Vol. 30 (1957) pp. 177–195.Google Scholar
  18. 18.
    T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry codes, Handbook of Coding Theory (V. S. Pless, W. C. Huffman and R. A. Brualdi, eds.), Elsevier, Amsterdam, Vol. I (1998) pp. 871–961.Google Scholar
  19. 19.
    J. Justesen, K. J. Larsen, H. Elbrønd Jensen, A. Havemose and T. Høholdt, Construction and decoding of a class of algebraic geometric codes, IEEE Trans. Inform. Theory, Vol. 35, July (1989) pp. 811–821.Google Scholar
  20. 20.
    A. G. Khovanskii, Newton polyhedra and the genus of complete intersections, Funct. Anal. i ego pril. English translation: English translation: Functional Anal. Appl., Vol. 12 (1978) pp. 38–46.Google Scholar
  21. 21.
    A. G. Kouchnirenko, The Newton polytope and the Milnor numbers, Funct. Anal. i ego pril. English translation: Functional Anal. Appl., Vol. 8 (1975) pp. 74–75.Google Scholar
  22. 22.
    A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Inventiones Math.,Vol. 32 (1976) pp. 1–31.Google Scholar
  23. 23.
    A. Kresch, J.L.Wetherell, and M.E. Zieve, Curves of every genus with many points, preprint (August 1999).Google Scholar
  24. 24.
    J. Milnor, Singular Points of Complex Hypersurfaces, Annals Math. Studies, Vol. 61, Princeton University Press, Princeton (1968).Google Scholar
  25. 25.
    S. Lang, Algebra, Addison-Wesley, Massachusetts (1965).Google Scholar
  26. 26.
    O. Moreno, D. Zinoviev and V. Zinoviev, On several new projective curves over {ie67–1} of genus 3, 4 and 5, IEEE Trans. Information Theory, Vol. 41 (Nov. 1995) pp. 1643–1648.Google Scholar
  27. 27.
    A.M. Ostrowski, On multiplication and factorization of polynomials, II Irreducibility discussion, Aequationes Math., Vol. 14 (1976) pp. 1–32.Google Scholar
  28. 28.
    R. Pellikaan, On the Klein quartic, the Fano plane and curves representing designs, in the Blahut Festschrift, Codes, Curves and Signals: Common Threads in Communications (A. Vardy, ed.), pp. 9–20. Kluwer Acad. Publ., Dordrecht (1998).Google Scholar
  29. 29.
    M. Saito, On the exponents and the geometric genus of an isolated hypersurface singularity, Proc. Symp. Pure Math, Vol. 40(2) (1983) pp. 465–472. Amer. Math. Soc.Google Scholar
  30. 30.
    V. Shabat, unpublished manuscript, Univ. Amsterdam (1997/98).Google Scholar
  31. 31.
    H. Stichtenoth, Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin (1993).Google Scholar
  32. 32.
    B. Sturmfels, Gröbner bases and convex polytopes, Univ. Lect. Series Vol. 8, Amer. Math. Soc., Providence (1991).Google Scholar
  33. 33.
    M.A. Tsfasman and S.G. Vladut Algebraic-Geometric Codes, Mathematics and its Applications, Vol. 58, Kluwer Acad. Publ., Dordrecht (1991)Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Peter Beelen
    • 1
  • Ruud Pellikaan
    • 1
  1. 1.Department of Mathematics and Computing ScienceTechnical University of EindhovenThe Netherlands

Personalised recommendations