Dynamics and Control

, Volume 9, Issue 3, pp 203–222 | Cite as

Robust Stabilization of Robotic Manipulators by PID Controllers

  • Anatoli A. Pervozvanski
  • Leonid B. Freidovich


A class of (directly and non-directly) controlled Lagrangian systems is considered. After a brief overview of known control laws, the main attention is paid to the most simple and the most popular PD, PID or PID-like controllers broadly used in robotics which are analyzed in details. New results demonstrating in particular robustness of closed-loop systems with respect to uncertainty in model description are shown. The efficiency of PID-like controllers for flexible joint robotic manipulators based on measurements of rotors velocities and links positions is investigated in detail also.

Robot control global asymptotic stabilization PID control robustness Lyapunov direct method singular perturbation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastin, G., Brogiliato, B., Campion, G., Canudas de Wit, C., d'Anre´a—Novel, B., De Luca, A., Khalil, W., Lozano, R., Ortega, R., Samson, C., Siciliano, B., Tomei, P., Theory of Robot Control, Springer-Verlag: Berlin, 1996.Google Scholar
  2. 2.
    Pervozvanski, A. A., “Theory of learning control, p.I. Elements of general theory, ” Automatika i Telemehanika, vol. 11, pp. 1637–1644, 1995. Engl. transl. in Automat. and Remote Control.Google Scholar
  3. 3.
    Pervozvanski, A. A., “Theory of learning control, p.II. Systems in Frobenius form and learning control of manipulators, ” Avtomatika i telemekhanika, vol. 12, pp. 1743–1751, 1995. Engl. transl. in Automation and Remote Control.Google Scholar
  4. 4.
    Pervozvanski, A. A., “On some algorithms of learning control, ” Applied Mathem. and Computation, vol. 78, pp. 209-216, 1996.Google Scholar
  5. 5.
    Slotine, J.-J. E. and Li, W., “On the adaptive control of robot manipulators, ” Int. J. of Robotics Research, vol. 6, pp. 49–59, 1987.Google Scholar
  6. 6.
    Ortega, R. and Spong, M. W., “Adaptive motion control of rigid robots: a tutorial, ” Automatica, vol. 25, pp. 877–888, 1989.Google Scholar
  7. 7.
    Spong, M. W. and Vidyasagar, M., Robot Dynamics and Control, Wiley: New York, 1989.Google Scholar
  8. 8.
    Pyatnitski, E. S., “The design of hierarchical systems for the decomposition principle. II, ” Avtomatika i Telemekhanika, vol. 2, pp. 57–71, 1989. English transl. in Automation and Remote Control.Google Scholar
  9. 9.
    Slotine, J.-J. E., “The robust control of robot manipulators, ” Int. J. of Robotics Research, vol. 4, pp. 49–64, 1985.Google Scholar
  10. 10.
    Spong, M. W., “Modeling and control of robots with elastic joints, ” Trans. ASME. J. Dynam. Syst. Meas.Control, vol. 109, pp. 310–319, 1987.Google Scholar
  11. 11.
    Takegaki, M. and Arimoto, S., “A new feedback method for dynamic control of manipulators, ” Trans. ASME J. of Dynam. Syst. Meas. Control, vol. 103, pp. 119–125, 1981.Google Scholar
  12. 12.
    Gusev, S. V., “Linear stabilization of nonlinear system program motion, ” Systems Control Letters, vol. 11, pp. 409–412, 1988.Google Scholar
  13. 13.
    Tomei, P., “A simple PD controller for robots with elastic joints, ” IEEE Trans. Autat. Control, vol. 36, pp. 1208–1212, 1991.Google Scholar
  14. 14.
    Burkov, I. V., “Asymptotic stabilization of nonlinear Lagrangian systems without measuring velocities, ” Active Control in Mechanical Engineering, Lyon: Association MV2: V. 2., 1995; in Proc. Int. Sympos., Lyon, France, 1993.Google Scholar
  15. 15.
    Berghuis, H. and Nijmeijer, H., “Global regulation of robots using only position measurements, ” Systems Control Letters, vol. 21, pp. 289–293, 1993.Google Scholar
  16. 16.
    Kelly, R., “A simple set-point controller by using only position measurements, ” in Proc. 12th IFAC World Congress, vol. 6, 1993.Google Scholar
  17. 17.
    Ortega, R., Loria, A., and Kelly, R., “A semiglobal stable output feedback PI2D regulator for robot manipulators, ” in Proc. of Eur. Control Conf., pp. 3456–3461, 1995.Google Scholar
  18. 18.
    Burkov, I.V., Pervozvanski, A. A., and Freidovich, L. B., “Stabilization of elastic robots by “PD” controller, ” Izv. RAN. Teoriya i sistemy upravlen., vol. 1, pp. 158–165, 1996. English transl. in J. of Computer and Syst. Sciences Intern., vol. 35.Google Scholar
  19. 19.
    Freidovich, L. B., “Stability of robotic manipulator positioning, ” M.Sc. thesis (advisors: Prof. A. A. Pervozvanski and Dr. I.V. Burkov), St. Petersburg State Technical University, Februrary 1996, (in Russian).Google Scholar
  20. 20.
    Burkov, I. V., Pervozvanski, A. A., and Freidovich, L. B., “Algorithms of robust global stabilization of flexible manipulators, ” in Proc. of World Automation Congress, ISRAM'96, Montpiler, France, vol. 3, pp. 137–142, 1996.Google Scholar
  21. 21.
    Arimoto, S. and Miyazaki, F., “Stability and robustness of PID feedback control for robot manipulators of sensory capability, ” Robotics Research 1. Cambridge: MIT, pp. 783–799, 1984.Google Scholar
  22. 22.
    Kamamura, S., Miyazaki, F., and Arimoto, S., “Is a local linear PD feedback control law effective for trajectory tracking of robot motion?” in Proc. of IEEE Int. Conf. on Robot and Automat., pp. 1335–1340, 1988.Google Scholar
  23. 23.
    Wen, J. T., “PID control of robot manipulators, ” Technical Report (Rensselaer Polytechnic Institute), 1989.Google Scholar
  24. 24.
    Wen, J. T. and Murphy, S., ”PID control for robot manipulators, ” Technical Report 54, CIRSSE, 1990.Google Scholar
  25. 25.
    Qu, Z. and Dorsey, J., “Robust PID control of robots, ” Int. J. Robotic and Automat., vol. 6, pp. 228–235, 1991.Google Scholar
  26. 26.
    Meressi, T., Chen, D. and Paden, B., “Application of Kharitonov's theorem to mechanical system, ” IEEE Trans. on Autom. Control, vol. 38, pp. 488–491, 1993.Google Scholar
  27. 27.
    Kelly, R., “Atuning procedure for stable PIDcontrol of robot manipulators, ” Robotica, vol. 13, pp. 141–148, 1995.Google Scholar
  28. 28.
    Rocco, P., “Stability of PID control for industrial robot arms, ” IEEE Trans. on Robot. and Autom., vol. 12, pp. 607–614, 1996.Google Scholar
  29. 29.
    Burkov, I. V., Pervozvanski, A. A. and Freidovich, L. B., “Global asymptotic stabilization of Lagrangian systems via PID regulators, ” in “Stability and oscillations of nonlinear control systems,” Moscow, Russia, p. 50, 1996.Google Scholar
  30. 30.
    Freidovich, L. B. and Pervozvanski, A. A. “Some estimates of performance for PID-like control of robotic manipulators, ” in Proc. of IFAC Symposium on Robot Control (SYROCO'97), Nantes, France, pp. 85–90, 1997.Google Scholar
  31. 31.
    Burkov, I. V., Pervozvanski, A. A., and Freidovich, L. B., “Robust stabilization of manipulators via control with slight integral feedback, ” Izv. RAN. Mekh. Tv. Tela, to appear. Engl. transl. in Mechanics of Solids.Google Scholar
  32. 32.
    Burdakov, S. F., Pervozvanski, A. A. and Freidovich, L. B., “Robust control of nonlinear mechanical systems via linear feedbacks, ” Avtomatika i Telemekh., submitted. Engl. transl. in Automation and Remote Control.Google Scholar
  33. 33.
    Sciavicco, L. and Siciliano, B., Modeling and Control of Robot Manipulators, McGraw Hill: NY, 1996.Google Scholar
  34. 34.
    Hoppensteadt, F., “Asymptotic stability in singular perturbation problems. II, ” J. Differ. Equations, vol. 15, pp. 510–521, 1974.Google Scholar
  35. 35.
    Desoer, C. A. and Lin, C. A., “Tracking and desturbance rejestion of MIMO nonlinear system with PI controller, ” IEEE Trans. Automat. Control, vol. 30, pp. 861–867, 1985.Google Scholar
  36. 36.
    Arimoto, S., “A class of quasi-natural potentials and hyper-stable PID servo-loops for nonlinear robotic systems, ” Trans. of the Soc. of Instr. and Contr. Eng., vol. 20, 1994.Google Scholar
  37. 37.
    Burkov, I. V. and Freidovich, L. B., “Stabilization of program position of elastic robot via control with saturation, ” in Proc. of 10th IFAC Workshop on Control Appl. of Optimiz., Haifa, Israel, pp. 103–108, 1995.Google Scholar
  38. 38.
    Burkov, I. V. and Freidovich, L. B., “Stabilization of Lagrangian systems with elastic elements under the restrictions on control with and without velocity measurements, ” Prikl. Matem. i Mekhan., vol. 61, pp. 97–106, 1997. Engl. transl. in J. Appl. Mathem. Mechan.Google Scholar
  39. 39.
    Pervozvanski, A. A. and Freidovich, L. B., “On astatism of nonlinear systems, ” Avtomat. i telemekh., vol. 7, pp. 35–42, 1998. Engl. transl in Automat. and Remote Control.Google Scholar
  40. 40.
    Pervozvanski, A. A. and Freidovich, L. B., “Astatism in nonlinear control systems with applications to robotics, ” in Proc. of International Conference on Informatics and Control (ICI&C'97), St. Petersburg, Russia, vol. 3, pp. 1205–1212, 1997.Google Scholar
  41. 41.
    Lin, Y., Sontag, E. D. and Wang, Y., “Input to state stabilization for parametrized families of systems, ” Internat. J. of Robust and Nonlinear Control, vol. 5, pp. 187–205, 1995.Google Scholar
  42. 42.
    Khalil, H. K., Nonlinear Systems, Macmillian Publishing Company: NY, 1992.Google Scholar
  43. 43.
    Rouche, M., Habets, P. and Laloy, M., Stability Theory by Liapunov's Direct Method, Springer-Verlag: NY, 1977.Google Scholar
  44. 44.
    Pervozvanski, A. A., Theory of Automatic Control, Nauka: Moscow, 1986 (in Russian).Google Scholar
  45. 45.
    Burkov, I. V. and Zaremba, A. T., “Dynamics of elastic manipulator with electric drives, ” Izv. Akad. Nauk SSSR Mekh. Tverd. Tela., vol. 1, pp. 57–64, 1987. Engl. transl. in Mechanics of Solids.Google Scholar
  46. 46.
    De Luca, A. and Panzieri, S., “Learning gravity compensation in robots: rigid arms, elastic joints, flexible links, ” Int. J. Adapt. Contr. and Signal Proc., vol. 7, pp. 417–433, 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Anatoli A. Pervozvanski
    • 1
  • Leonid B. Freidovich
    • 2
  1. 1.Department of Mechanics and Control ProcessesSt. Petersburg State Technical UniversitySt. PetersburgRUSSIA
  2. 2.Department of MathematicsMichigan State UniversityEast Lansing

Personalised recommendations