Advertisement

Journal of Biomolecular NMR

, Volume 12, Issue 3, pp 395–405 | Cite as

CAMRA: Chemical shift based computer aided protein NMR assignments

  • Wolfram Gronwald
  • Leigh Willard
  • Timothy Jellard
  • Robert F. Boyko
  • Krishna Rajarathnam
  • David S. Wishart
  • Frank D. Sönnichsen
  • Brian D. Sykes
Article

Abstract

A suite of programs called CAMRA (Computer Aided Magnetic Resonance Assignment) has been developed for computer assisted residue-specific assignments of proteins. CAMRA consists of three units: ORB, CAPTURE and PROCESS. ORB predicts NMR chemical shifts for unassigned proteins using a chemical shift database of previously assigned homologous proteins supplemented by a statistically derived chemical shift database in which the shifts are categorized according to their residue, atom and secondary structure type. CAPTURE generates a list of valid peaks from NMR spectra by filtering out noise peaks and other artifacts and then separating the derived peak list into distinct spin systems. PROCESS combines the chemical shift predictions from ORB with the spin systems identified by CAPTURE to obtain residue specific assignments. PROCESS ranks the top choices for an assignment along with scores and confidence values. In contrast to other auto-assignment programs, CAMRA does not use any connectivity information but instead is based solely on matching predicted shifts with observed spin systems. As such, CAMRA represents a new and unique approach for the assignment of protein NMR spectra. CAMRA will be particularly useful in conjunction with other assignment methods and under special circumstances, such as the assignment of flexible regions in proteins where sufficient NOE information is generally not available. CAMRA was tested on two medium-sized proteins belonging to the chemokine family. It was found to be effective in predicting the assignment providing a database of previously assigned proteins with at least 30% sequence identity is available. CAMRA is versatile and can be used to include and evaluate heteronuclear and three-dimensional experiments.

assignment homology programs automatic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baggiolini, M., Dewald, B. and Moser, B. (1996) Annu. Rev. Immunol., 15, 675–705.Google Scholar
  2. Bartels, C., Billeter, M., Güntert, P. and Wüthrich, K. (1996) J. Biomol. NMR, 7, 207–213.Google Scholar
  3. Bax, A. and Grzesiek, S. (1993) Acc. Chem. Res., 26, 131–138.Google Scholar
  4. Bigam, C., Jellard, T., Gronwald, W. and Sykes, B.D. (1998) Magnetic Moments, 9, 9–12.Google Scholar
  5. Clore, G.M. and Gronenborn, A.M. (1991) Science, 252, 1390–1399.Google Scholar
  6. Croft, D., Kemmink, J., Neidig, K.-P. and Oschkinat, H. (1997) J. Biomol. NMR, 10, 207–219.Google Scholar
  7. Crump, M.P., Gong, J.-H., Loetscher, P., Rajarathnam, K., Arenzana-Seisdedos, F., Virelizier, J.-L., Baggioloini, M., Sykes, B. D. and Clark-Lewis, I. (1997) EMBO J., 16, 6996–7007.Google Scholar
  8. de Dios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 5113, 1491–1496.Google Scholar
  9. Fairbrother, W.J. and Skelton, N.J. (1996) Three dimensional structures of the chemokine family. In R. Horuk (ed.), Chemoattractant Ligands and their Receptors, CRC Press, London, pp. 55–86.Google Scholar
  10. Friedrichs, M.S., Mueller, L. and Wittekind, M. (1994) J. Biomol. NMR, 4, 703–726.Google Scholar
  11. Garrett, D.S., Powers, R., Gronenborn, A. and Clore, G.M. (1991) J. Magn. Reson., 94, 214–220.Google Scholar
  12. Gronwald, W., Boyko, R.F., Sönnichsen, F.D., Wishart, D.S. and Sykes, B.D. (1997) J. Biomol. NMR, 10, 165–179.Google Scholar
  13. Gronwald, W., Boyko, R.F. and Sykes, B.D. (1997) CABIOS, 13, 557–558.Google Scholar
  14. Handel, T.M. and Domaille, P.J. (1996) Biochemistry, 33, 15283–15292.Google Scholar
  15. Hare, B.J. and Prestegard, J.H. (1994) J. Biomol. NMR, 4, 35–46.Google Scholar
  16. Kim, K.-S., Rajarathnam, K., Clark-Lewis, I. and Sykes, B.D. (1996) FEBS Lett., 395, 277–282.Google Scholar
  17. Kjaer, M., Andersen, K.V. and Poulsen, F.M. (1994) Methods Enzymol., 239, 288–318.Google Scholar
  18. Kleywegt, G.J., Boelens, R., Cox, M., Llinás, M. and Kaptein, R. (1991) J. Biomol. NMRi, 1, 23–47.Google Scholar
  19. Kraulis, P.J. (1994) J. Mol. Biol., 243 696–718.Google Scholar
  20. Lodi P.J., Garret, D.S., Kuszewski, J., Tsang, M.L.-w., Weatherbee, J.A., Leonard, W.J., Gronenborn, A.M. and Clore, G.M. (1994) Science, 263, 1762–1767.Google Scholar
  21. Lukin, J.A., Gove, A.P. Talukdar, S.N. and Ho, C. (1997) J. Biomol. NMR, 9, 151–166.Google Scholar
  22. Meadows, R.P., Olejniczak, E.T. and Fesik, S.W. (1994) J. Biomol. NMR, 4, 79–96.Google Scholar
  23. Morelle, N., Brutscher, B., Simorre, J-P. and Morelle, M.D. (1995) J. Biomol. NMR, 5, 154–160.Google Scholar
  24. Olson, J.B. Jr. and Markley, J.L. (1994) J. Biomol. NMR, 4, 385–410.Google Scholar
  25. Oschkinat, H., Holak, T.A. and Cieslar, C. (1991) Biopolymers, 31, 699–712.Google Scholar
  26. Ousterhout, J.K. (1994) Tcl and the Tk Toolkit, Addison-Wesley Professional Computing Series.Google Scholar
  27. Piotto, M., Saudek, V. and Sklenar, V. (1992) J. Biomol. NMR, 2, 661–665.Google Scholar
  28. Rajarathnam, K., Clark-Lewis, I. and Sykes, B.D. (1994) Biochemistry, 33, 6623–6630.Google Scholar
  29. Rajarathnam, K., Clark-Lewis, I. and Sykes, B.D. (1995) Biochemistry, 34, 12983–12990.Google Scholar
  30. Rajarathnam, K., Clark-Lewis, I., Dewald, B., Baggiolini, M. and Sykes, B.D. (1996) FEBS Lett., 399, 43–46.Google Scholar
  31. Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J.L. (1991) J. Biomol. NMR, 1, 217–236.Google Scholar
  32. Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson., 77, 274–293.Google Scholar
  33. Skelton, N.J., Aspiras, F. and Schall, T.J. (1995) Biochemistry, 34, 5329–5342.Google Scholar
  34. Wall, L. and Schwartz, R.L. (1990) Programming perl, O'Reilly and Associates, Inc.Google Scholar
  35. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.Google Scholar
  36. Xu, J. and Sanctuary, B.C. (1993) J. Chem. Inf. Comput. Sci., 33, 490–500.Google Scholar
  37. Xu, J., Weber, P.L. and Borer, P.N. (1995) J. Biomol. NMR, 5, 183–192.Google Scholar
  38. Zimmermann, D., Kulikowski, C., Wang, L., Lyons, B. and Montelione, G.T. (1994) J. Biomol. NMR, 4, 241–256.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Wolfram Gronwald
    • 1
    • 2
  • Leigh Willard
    • 1
  • Timothy Jellard
    • 1
  • Robert F. Boyko
    • 2
  • Krishna Rajarathnam
    • 1
    • 2
  • David S. Wishart
    • 1
    • 3
  • Frank D. Sönnichsen
    • 4
  • Brian D. Sykes
    • 1
    • 2
  1. 1.Protein Engineering Network of Centres of ExcellenceUniversity of AlbertaEdmontonCanada
  2. 2.Department of BiochemistryUniversity of AlbertaEdmontonCanada
  3. 3.Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonCanada
  4. 4.Department of Physiology and BiophysicsCase Western Reserve UniversityClevelandU.S.A

Personalised recommendations