Nonlinear Dynamics

, Volume 21, Issue 1, pp 71–99 | Cite as

Helical and Localised Buckling in Twisted Rods: A Unified Analysis of the Symmetric Case

  • G.H.M. van der Heijden
  • J.M.T. Thompson
Article

Abstract

We review the geometric rod theory for the case of a naturallystraight, linearly elastic, inextensible, circular rod suffering bendingand torsion but no shear. Our primary focus is on the post-bucklingbehaviour of such rods when subjected to end moment and tension.Although this is a classic problem with an extensive literature, datingback to Kirchhoff, the usual approach tends to neglect the physicalinterpretation of solutions (i.e., rod configurations) to the modelsproposed. Here, we explicitly compute geometrical properties of buckledrods. In a unified approach, making use of Kirchhoff's dynamic analogy,both the classical helical and the more recently investigated localisedbuckling are considered. Special attention is given to a consistenttreatment of concepts of link, twist and writhe.

rod theory buckling helix localisation homoclinic orbit link twist writhe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antman, S. S., Nonlinear Problems of Elasticity, Springer-Verlag, Berlin, 1995.Google Scholar
  2. 2.
    Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th edn., Cambridge University Press, Cambridge, 1927.Google Scholar
  3. 3.
    Champneys, A. R. and Thompson, J. M. T., ‘A multiplicity of localised buckling modes for twisted rod equations’, Proceedings of the Royal Society of London A 452, 1996, 2467–2491.Google Scholar
  4. 4.
    Van der Heijden, G. H. M., Champneys, A. R., and Thompson, J. M. T., ‘The spatial complexity of localised buckling in rods with non-circular cross-section’, SIAM Journal on Applied Mathematics 59, 1999, 198–221.Google Scholar
  5. 5.
    Goldstein, H., Classical Mechanics, 2nd edn., Addison-Wesley, Reading, MA, 1980.Google Scholar
  6. 6.
    Antman, S. S. and Jordan, K. B., ‘Qualitative aspects of the spatial deformation of non-linearly elastic rods’, Proceedings of the Royal Society of Edinburgh A 73(5), 1974, 85–105.Google Scholar
  7. 7.
    Benham, C. J., ‘An elastic model of the large-scale structure of duplex DNA’, Biopolymers 18, 1979, 609–623.Google Scholar
  8. 8.
    Shi, Y. and Hearst, J. E., ‘The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling’, Journal of Chemical Physics 101, 1994, 5186–5200.Google Scholar
  9. 9.
    Tobias, I., Coleman, B. D., and Olson, W. K., ‘The dependence of DNA tertiary structure on end conditions: theory and implications for topological transitions’, Journal of Chemical Physics 101, 1994, 10990–10996.Google Scholar
  10. 10.
    Thompson, J. M. T. and Champneys, A. R., ‘From helix to localized writhing in the torsional post-buckling of elastic rods’, Proceedings of the Royal Society of London A 452, 1996, 117–138.Google Scholar
  11. 11.
    Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability, 2nd edn., McGraw-Hill, New York, 1961.Google Scholar
  12. 12.
    Coyne, J., ‘Analysis of the formation and elimination of loops in twisted cable’, IEEE Journal of Oceanic Engineering 15, 1990, 72–83.Google Scholar
  13. 13.
    Vigodsky, M., Matematicheskii Sbornik 16, 1945, 73–80.Google Scholar
  14. 14.
    Kauffman, L. H., Knots and Physics, World Scientific, Singapore, 1991.Google Scholar
  15. 15.
    Fuller, F. B., ‘The writhing number of a space curve’, Proceedings of the National Academy of Sciences of the United States of America 68, 1971, 815–819.Google Scholar
  16. 16.
    Călugăreanu, G., ‘Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants’, Czechoslovak Mathematical Journal 11, 1961, 588–625.Google Scholar
  17. 17.
    White, J. H., ‘Self-linking and the Gauss integral in higher dimensions’, American Journal of Mathematics 91, 1969, 693–728.Google Scholar
  18. 18.
    Moffatt, H. K. and Ricca, R. L., ‘Helicity and the Călugăreanu invariant’, Proceedings of the Royal Society of London A 439, 1992, 411–429.Google Scholar
  19. 19.
    Pohl, W. F., ‘DNA and differential geometry’, Mathematical Intelligencer 3, 1980, 20–27.Google Scholar
  20. 20.
    Fuller, F. B., ‘Decomposition of the linking of a closed ribbon: a problem from molecular biology’, Proceedings of the National Academy of Sciences of the United States of America 75, 1978, 3557–3561.Google Scholar
  21. 21.
    Tabor, M. and Klapper, I., ‘The dynamics of knots and curves (Parts I and II)’, Nonlinear Science Today 4(1), 1994, 7–13, 4(2), 1994, 12–18.Google Scholar
  22. 22.
    Alexander, J. C. and Antman, S. S., ‘The ambiguous twist of Love’, Quarterly of Applied Mathematics 40, 1982, 83–92.Google Scholar
  23. 23.
    Champneys, A. R., van der Heijden, G. H. M., and Thompson, J. M. T., ‘Spatially complex localization after one-twist-per-wave equilibria in twisted circular rods with initial curvature’, Philosophical Transactions of the Royal Society of London A 355, 1997, 2151–2174.Google Scholar
  24. 24.
    Van der Heijden, G. H. M. and Thompson, J. M. T., ‘Lock-on to tape-like behaviour in the torsional buckling of anisotropic rods’, Physica D 112, 1998, 201–224.Google Scholar
  25. 25.
    Van der Heijden, G. H. M., Champneys, A. R., and Thompson, J. M. T, ‘Spatially complex localisation in twisted elastic rods constrained to lie in the plane’, Journal of the Mechanics and Physics of Solids 47, 1999, 59–79.Google Scholar
  26. 26.
    Van der Heijden, G. H. M., ‘The static deformation of a twisted elastic rod constrained to lie on a cylinder’, Proceedings of the Royal Society A, submitted.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • G.H.M. van der Heijden
    • 1
  • J.M.T. Thompson
    • 1
  1. 1.Centre for Nonlinear DynamicsUniversity College LondonLondonU.K.

Personalised recommendations