Nonlinear Dynamics

, Volume 22, Issue 1, pp 15–27 | Cite as

Symmetry Reductions of Equations for Solute Transport in Soil

  • P. Broadbridge
  • J. M. Hill
  • J. M. Goard
Article

Abstract

Solute transport in saturated soil is represented by anonlinear system consisting of a Fokker–Planck equation coupled toLaplace's equation. Symmetries, reductions and exact solutions are foundfor two dimensional transient solute transport through some nontrivialwedge and spiral steady water flow fields. In particular, the mostgeneral complex velocity potential is determined, such that the soluteequation admits a stretching group of transformations that wouldnormally be possessed by a point source solution.

solute transport saturated soil dispersion Fokker–Planck 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jury, W. A., ‘Solute transport and dispersion’, in Flow and Transport in the Natural Environment: Advances and Applications, W. L. Steffen and O. T. Denmead (eds.), Springer-Verlag, Berlin, 1988, pp. 1-16.Google Scholar
  2. 2.
    Woods, J., Simmons, C. T., and Narayan, K. A., ‘Verification of black box groundwater models’, in EMAC98 Proceedings of the Third Biennial Engineering Mathematics and Applications Conference, E. O. Tuck and J. A. K. Stott (eds.), Institution of Engineers Australia, Adelaide, 1998, pp. 523-526.Google Scholar
  3. 3.
    Wierenga, P. J., ‘Water and solute transport and storage’, in Handbook of Vadose Zone Characterization and Monitoring, L. G. Wilson, G. E. Lorne, and S. J. Cullen (eds.), Lewis Publishers, Boca Raton, FL, 1995, pp. 41-60.Google Scholar
  4. 4.
    Ségol, G., Classic Groundwater Simulations: Proving and Improving Numerical Models, Prentice Hall, Englewood Cliffs, NJ, 1994.Google Scholar
  5. 5.
    Salles, J., Thovert, J.-F., Delannay, R., Presons, L., Auriault, J.-L., and Adler, P. M., ‘Taylor dispersion in porous media: Determination of the dispersion tensor’, Physics of Fluids A 5, 1993, 2348-2376.Google Scholar
  6. 6.
    Philip, J. R., ‘Some exact solutions of convection-diffusion and diffusion equations’, Water Resources Research 30, 1994, 3545-3551.Google Scholar
  7. 7.
    van Genuchten, M. T. and Alves, W. J., ‘Analytical solutions of the one-dimensional convective-dispersive solute transport equation’, U.S. Department of Agriculture, Technical Bulletin 1661, 1982, 1-151.Google Scholar
  8. 8.
    Philip, J. R., ‘Theory of infiltration’, Advances in Hydrosciences 5, 1969, 215-296.Google Scholar
  9. 9.
    Sherring, J., ‘DIMSYM: Symmetry determination and linear differential equations package’, Research Report, Latrobe University Mathematics Department, 1993, http://www.latrobe.edu.au/www/mathstats/ Maths/Dimsym/Google Scholar
  10. 10.
    Maas, L. R. M., ‘A closed form Green function describing diffusion in a strained flow field’, SIAM Journal of Applied Mathematics 49, 1989, 1359-1373.Google Scholar
  11. 11.
    Zoppou, C. and Knight, J. H., ‘Analytical solution of a spatially variable coefficient advection-diffusion equation in one-, two-and three-dimensions’, Preprint, CSIRO, Land and Water, Canberra, 1998.Google Scholar
  12. 12.
    Abramowitz, M. and Stegun, I. A. (eds.), Handbook of Mathematical Functions, Dover, New York, 1972.Google Scholar
  13. 13.
    Redfern, D., The Maple Handbook, Springer-Verlag, New York, 1996.Google Scholar
  14. 14.
    Ibragimov, N. H. (ed.) CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 2, Section 8.12.1, CRC Press, Boca Raton, FL, 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P. Broadbridge
    • 1
  • J. M. Hill
    • 1
  • J. M. Goard
    • 1
  1. 1.School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia

Personalised recommendations