Journal of Biomolecular NMR

, Volume 12, Issue 4, pp 501–508 | Cite as

On using time-averaging restraints in molecular dynamics simulation

  • Walter R.P. Scott
  • Alan E. Mark
  • Wilfred F. van Gunsteren


Introducing experimental values as restraints into molecular dynamics (MD) simulations to bias the values of particular molecular properties, such as nuclear Overhauser effect intensities or distances, 3J coupling constants, chemical shifts or crystallographic structure factors, towards experimental values is a widely used structure refinement method. To account for the averaging of experimentally derived quantities inherent in the experimental techniques, time-averaging restraining methods may be used. In the case of structure refinement using 3J coupling constants from NMR experiments, time-averaging methods previously proposed can suffer from large artificially induced structural fluctuations. A modified time-averaged restraining potential energy function is proposed which overcomes this problem. The different possible approaches are compared using stochastic dynamics simulations of antamanide, a cyclic peptide of ten residues.

computer simulation J-coupling constants molecular dynamics structure refinement time-averaging restraints 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brüschweiler, R., Blackledge, M. and Ernst, R.R. (1991) J. Biomol. NMR, 1, 3-11.Google Scholar
  2. Bystrov, V.F. (1976) Prog. NMR Spectrosc., 10, 41-81.Google Scholar
  3. Karle, I.L., Wieland, T., Schermer, D. and Ottenheym, H.C.J. (1979) Proc. Natl. Acad. Sci. USA, 76 1532-1536.Google Scholar
  4. Karplus, M. (1959) J. Chem. Phys., 30, 11-15.Google Scholar
  5. Kessler, H., Bats, J.W., Lautz, J. and Müller, A. (1989) Liebigs Ann. Chem., 9, 913-928.Google Scholar
  6. Kessler, H., Griesinger, C., Lautz, J., Müller, A., van Gunsteren, W.F. and Berendsen, H.J.C. (1988) J. Am. Chem. Soc., 110, 3393-3396.Google Scholar
  7. Nanzer, A.P., Torda, A.E., Bisang, C., Weber, C., Robinson, J.A. and van Gunsteren, W.F. (1997) J. Mol. Biol., 267, 1012-1025.Google Scholar
  8. Pardi, A., Billeter, M. and Wüthrich, K. (1984) J. Mol. Biol., 180, 741-751.Google Scholar
  9. Pearlman, D.A. (1994) J. Biomol. NMR, 4, 279-299.Google Scholar
  10. Ryckaert, J.-P., Ciccotti, G. and Berendsen, H.J.C. (1977) J. Comput. Phys., 23, 327-341.Google Scholar
  11. Schiffer, C.A., Gros, P. and van Gunsteren, W.F. (1995) Acta Cryst., D51, 85-92.Google Scholar
  12. Scott, W.R.P., Hünenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Krüger, P. and van Gunsteren, W.F. (1998) J. Phys. Chem. A. to be submitted.Google Scholar
  13. Torda, A.E., Brunne, R.M., Huber, T., Kessler, H. and van Gunsteren, W.F. (1993) J. Biomol. NMR, 3, 55-66.Google Scholar
  14. Torda, A.E., Scheek, R.M. and van Gunsteren, W.F. (1990) J. Mol. Biol., 214, 223-235.Google Scholar
  15. van Gunsteren, W.F. and Berendsen, H.J.C. (1988) Mol. Simul., 1, 173-185.Google Scholar
  16. van Gunsteren, W.F., Billeter, S.R., Eising, A.A., Hünenberger, P.H., Krüger, P., Mark, A.E., Scott, W.R.P. and Tironi, I.G. (1996) Biomolecular Simulation: The GROMOS96 Manual and User Guide. VdF: Hochschulverlag AG an der ETH Zürich and BIOMOS b.v., Zürich, Groningen.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Walter R.P. Scott
    • 1
  • Alan E. Mark
    • 1
  • Wilfred F. van Gunsteren
    • 1
  1. 1.Laboratory of Physical Chemistry, ETH ZentrumZürichSwitzerland

Personalised recommendations