Celestial Mechanics and Dynamical Astronomy

, Volume 70, Issue 3, pp 167–180 | Cite as

Oscillatory orbits in the planar three‐body problem with equal masses

  • Kiyotaka Tanikawa
  • Hiroaki Umehara


In the free‐fall three‐body problem, distributions of escape, binary, and triple collision orbits are obtained. Interpretation of the results leads us to the existence of oscillatory orbits in the planar three‐body problem with equal masses. A scenario to prove their existence is described.

three‐body problem oscillatory motion collision orbits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agekian, T. A. and Anosova, J. P.: 1968, A study of the dynamics of triple systems by means of statistical sampling, Sov. Phys.-Astron. 11, 1006–1014.ADSGoogle Scholar
  2. Alekseev, V. M.: 1968 and 1969, Quaisirandom dynamical systems, I, II, III, Math. USSR-Sb 5, 73–128; 6, 505–560; 7, 1–43.MATHCrossRefGoogle Scholar
  3. Anosova, J. P. and Zavalov, N. N.: 1989, States of strong gravitational interaction in the general three-body problem, Sov. Astron. 33, 79–83.ADSGoogle Scholar
  4. Broucke, R.: 1995, On the role of the moment of inertia in three-body scattering, in A. E. Roy (ed.), From Newton to Chaos, Plenum Press, New York, pp. 327–341.Google Scholar
  5. Chazy, J.: 1922, Sur l'allure du mouvement dans le problème des trois corps quand le temps croit indefiniment, Ann. Sci. Ecole Norm Sup. 39, 29–130.MATHMathSciNetGoogle Scholar
  6. Devaney, R.: 1981, Singularities in classical mechanical systems, in A. Katok (ed.), Ergodic Theory and Dynamical Systems, Birkhäuser, Boston.Google Scholar
  7. Easton, R.: 1984, Parabolic orbits in the planar three body problem, J. Diff. Eqs. 52, 116–134.MATHMathSciNetCrossRefGoogle Scholar
  8. Easton, R. and McGehee, R.: 1979, Homoclinic phenomena for orbits doubly asymptotic to an invariant three sphere, Indiana Univ. Math. J. 28, 211–240.MATHMathSciNetCrossRefGoogle Scholar
  9. Moser, J.: 1973, Stable and random motions in dynamical systems, Annals Math. Studies No. 77, Princeton Univ. Press, Princeton, NJ.Google Scholar
  10. Nakato, M. and Aizawa, Y.: 1998 (submitted).Google Scholar
  11. Robinson, C.: 1984, Homoclinic orbits and oscillation for planar three-body problem, J. Diff. Eqs. 52, 356–377.MATHCrossRefGoogle Scholar
  12. Saari, D. G. and Xia, Z.: 1989, The existence of oscillatory and superhyperbolic motion in Newtonian systems, J. Diff. Eqs. 82, 342–355.MATHMathSciNetCrossRefGoogle Scholar
  13. Simó, C. and Martinez, R.: 1988, Qualitative study of the planar isosceles three-body problem, Celest. Mech. Dynam. Astron. 41, 179–251.Google Scholar
  14. Sitnikov, K.: 1960, Existence of oscillating motions for the three-body problem, Dokl. Akad. Nauk. USSR 133, 303–306.MATHMathSciNetGoogle Scholar
  15. Tanikawa, K., Umehara, H. and Abe, H.: 1995, A search for collision orbits in the free-fall three-body problem I. numerical procedure, Celest. Mech. Dynam. Astron., 335–362.Google Scholar
  16. Tanikawa, K. and Umehara, H.: 1996, Oscillatory orbits in the free-fall three-body problem, in H. Kinoshita and H. Nakai (eds), Proc. 28th Symp. on “Celestial Mechanics”, pp. 15–22.Google Scholar
  17. Umehara, H.: 1998, PhD Thesis, The Graduate University of Advanced Studies, Mitaka, Tokyo, 181 Japan.Google Scholar
  18. Umehara, H., Tanikawa, K. and Aizawa, Y.: 1995, Triple collision and escape in the three-body problem, in Y. Aizawa et al. (eds), Dynamical Systems and Chaos, World Scientific, Singapore, Vol. 2, pp. 404–407.Google Scholar
  19. Umehara, H. and Tanikawa, K.: 1996, Dominant roles of binary and triple collisions in the free-fall three-body problem, in J. C. Muzzio et al. (eds), Chaos in Gravitational N-Body Systems, Kluwer Academic Publishers, Netherland, pp. 285–290.Google Scholar
  20. Xia, Z.: 1994, Arnold diffusion and oscillatory solutions in the planar three-body problem, J. Diff. Eqs. 110, 289–321.MATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Kiyotaka Tanikawa
    • 1
  • Hiroaki Umehara
    • 2
  1. 1.National Astronomical ObservatoryMitaka, TokyoJapan
  2. 2.Kashima Space Research Center Communications Research LaboratorySpace Systems SectionKashimaJapan

Personalised recommendations