Advertisement

Molecular Engineering

, Volume 7, Issue 3–4, pp 349–365 | Cite as

A Quantum Chemical Approach to Reactions in Biomolecules

  • Nathalie Reuter
  • Michel Loos
  • Géerald Monard
  • Alain Cartier
  • Bernard Maigret
  • Jean-Louis Rivail
Article

Abstract

In order to overcome the limitations of conventional molecular mechanics and quantum mechanics studies of model systems, we recently proposed a coherent computational scheme, for very large molecules, in which the subsystem that undergoes the most important electronic changes is treated by a semi-empirical quantum chemical method, though the rest of the molecule is described by a classical force field. The continuity between the two subsystems is obtained by a strictly localized bond orbital, which is assumed to have transferable properties determined on model molecules. The computation of the forces acting on the atoms is now operative, giving rise to a hybrid Classical Quantum Force Field (CQFF) which allows full energy minimization and the modelling of chemical changes in large biomolecules.

As illustrative examples we present the proton exchange process in the histidine–aspartic acid system of the catalytic triad of human neutrophil elastase and the inhibition of the charge relay system in the trypsin-BPTI complex. In contrast to a classical force field, the CQFF approach reproduces the crystallographic data quite well. The method also offers the possibility of switching off the electrostatic interaction between the quantum and the classical subsystems allowing us to analyze the various components of the perturbation exerted by the macromolecule in the reactive part. Molecular dynamics confirms a fast proton exchange between the three possible energy wells in HNE. We also explain the inhibition of trypsin by BPTI by a perturbation of the catalytic triad geometry of trypsin in the presence of BPTI.

QM/MM methods HNE Bovine trypsin BPTI serine proteases catalytic triad 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. McCammon and S.C. Harvey: Dynamics of Proteins and Nucleic Acids, Cambridge University Press (1987).Google Scholar
  2. 2.
    M. Karplus: in Modelling of Molecular Structures and Properties, J.L. Rivail, ed., Elsevier, Amsterdam, p. 427 (1990).Google Scholar
  3. 3.
    W.F. Van Gunsteren and H.J.C. Berendsens: Angew. Chem. Int. Ed. 29, 992 (1990).CrossRefGoogle Scholar
  4. 4.
    H.A. Scheraga: in Advances in Biomolecuar Simulations, R. Lavery, J.L. Rivail and J. Smith, eds., American Institute of Physics, Washington, p. 97 (1991).Google Scholar
  5. 5.
    K. Rasmussen: in First European Conference on Computer Chemistry, F. Bernardi and J.L. Rivail, eds., American Institute of Physics, Washingtino (1995).Google Scholar
  6. 6.
    A. Warshel and M. Levitt: J.Mol. Biol. 103, 227 (1976). See also A.Warshel:Computer Modeling of Chemical Reactions in Enzymes and Solutions, John Wiley and Sons, New York (1991).Google Scholar
  7. 7.
    O. Tapia, F. Colonna, and J.G. Ángyán: J. Chem. Phys. 97, 875 (1990).Google Scholar
  8. 8.
    M.J. Field, P.A. Bash and M. Karplus: J. Comp. Chem. 11, 700 (1990).CrossRefGoogle Scholar
  9. 9.
    F. Bernardi, M. Olivucci and M.A. Robb: J. Comp. Chem. 114, 1606 (1992).Google Scholar
  10. 10.
    V. Thery, D. Rinaldi, J.L. Rivail, B. Maigret, and G.G. Ferenczy: J. Comp. Chem. 15, 269 (1994).CrossRefGoogle Scholar
  11. 11.
    J.A. Pople, D.P. Santry and G.A. Segal: J. Chem. Phys. 43, 125 (1965).Google Scholar
  12. 12.
    S. Bratos: Coll. Int. CNRS (Paris) 82, 287. See also D. Rinaldi, M.F. Ruiz Lopez and J.L. Rivail: J. Chem. Phys. 81, 295 (1984).Google Scholar
  13. 13.
    D.A. Pearlman, D.A. Case, J.C. Caldwell, G.L. Seibel, U.C. Singh, P.Weiner and P.A. Kollman: AMBER 4.0, University of California, San Franscisco (1991).Google Scholar
  14. 14.
    V. Thery: Thesis Université de nancy I (1993).Google Scholar
  15. 15.
    M.A. navia, B.M. McKeever, J.P. Springer, T.Y. Lin, H.R. Williams, E.M. Fluder, C.P. Dorn, and K. Hoogsteen: Proc. Nat. Acad. Sci. USA 86, 7 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Banacky and B. Linder: Biophys. Chem. 13(3), 223–31 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    J.J.P. Stewart: J. Comp. Chem. 10, 209, 221 (1989).Google Scholar
  18. 18.
    J. Ángyán and G. NáraySzabó: J. Theor. Biol. 103, 349 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Warshel: Biochemistry 20(11), 3167–3177 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    D. Voet and J.G. Voet: Biochemistry, Wiley International Edition.Google Scholar
  21. 21.
    D. Rinaldi, P.E. Hoggan, A. Cartier, K. Baka, G. Monard, A. Mokrane, V. Dillet, and V. Thery: in preparation.Google Scholar
  22. 22.
    M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart: J. Am. Chem. Soc. 107, 3902 (1985).CrossRefGoogle Scholar
  23. 23.
    DISCOVER: Biosym Technologies, 9685 Scranton Road, San Diego, CA (92121- 4778).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Nathalie Reuter
    • 1
  • Michel Loos
    • 1
    • 2
  • Géerald Monard
    • 1
  • Alain Cartier
    • 1
  • Bernard Maigret
    • 1
  • Jean-Louis Rivail
    • 1
  1. 1.Laboratoire de Chimie théorique, UA CNRS 510Université Henri PoincaréVandoeuvre les Nancy CedexFrance
  2. 2.Departamento de Fisica GeralUniversidade de São Paulo (SP)Brazil

Personalised recommendations