Advertisement

Biodegradation

, Volume 8, Issue 5, pp 287–296 | Cite as

A Model for diffusion controlled bioavailability of crude oil components

  • Farooq A. Uraizee
  • Albert D. Venosa
  • Makram T. Suidan
Article

Abstract

Crude oil is a complex mixture ofseveral different structural classes of compoundsincluding alkanes, aromatics, heterocyclic polarcompounds, and asphaltenes. The rate and extent ofmicrobial degradation of crude oil depends on theinteraction between the physical and biochemicalproperties of the biodegradable compounds and theirinteractions with the non-biodegradable fraction. Inthis study we have systematically altered theconcentration of non-biodegradable material in thecrude oil and analyzed its impact on transport of thebiodegradable components of crude oil to themicroorganisms. We have also developed a mathematicalmodel that explains and accounts for the dependence ofbiodegradation of crude oil through a putativebioavailability parameter. Experimental resultsindicate that as the asphaltene concentration in oilincreases, the maximum oxygen uptake in respirometersdecreases. The mathematically fitted bioavailabilityparameter of degradable components of oil alsodecreases as the asphaltene concentration increases.

asphaltene bioavailability biodegradation crude oil diffusivity modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45: 180–209Google Scholar
  2. Atlas RM & Bartha R (1973) Effect of some commercial oil herders, dispersants and bacterial inocula on biodegradation of oil in sea waters. In: Ahearns D.G. & Myers S.P. (Eds) Microbial degradation of oil pollutants, Louisiana State University publication-number LSU-SG-73-01, Baton Rouge, LouisianaGoogle Scholar
  3. Becher P (1965) Emulsion: Theory and Practice, 2nd edition. Reinhold, New YorkGoogle Scholar
  4. Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles, Academic Press, New YorkGoogle Scholar
  5. Coulalglou CA & Travlarides LL (1973) Drop size distribution and coalescence frequencies of liquid-liquid dispersions in flow vessels. AIChE J. 22: 289–297Google Scholar
  6. Crank J (1975) Mathematics of Diffusion, 2nd edition. Clarendon Press, Oxford (England)Google Scholar
  7. Cussler EL (1984) Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, New York (USA)Google Scholar
  8. Edwards DA, Luthy RG & Lui Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol. 25: 127–133Google Scholar
  9. Haines JR, Wrenn BA, Holder EL, Strohmeier KL, Harrington RT & Venosa AD (1995) Measurement of hydrocarbon degrading microbial populations by a 96-well plate most-probable-number procedure. J. Ind. Microbiol. 16: 36–41Google Scholar
  10. Haines JR, Holder EL & Venosa AD (1997) Assessment of mixed microbial cultures for bioremediation product testing. Fourth In situ and on-site bioremediation symposium 4: 419–424Google Scholar
  11. Horowitz A, Gutnick D & Rosenberg E (1975) Sequential growth of bacteria on crude oil. Applied Microbiology 30:10–19Google Scholar
  12. Hunter RJ (1987) Foundations of Colloid Science, Volume 1, Clarendon Press, OxfordGoogle Scholar
  13. Kawashima H, Nakahara T, Oogaki M & Tabuchi T (1983) Extra-cellular production of a mannosylerthritol lipid by a mutant of Candida sp. from n-alkanes and triacyl glycerols. Journal of Fermentation Technology 61: 143–149Google Scholar
  14. Klee AJ (1993) A computer program for the determination of most probable number and its confidence limits. J. Microbiol. Methods 18: 36–41Google Scholar
  15. Li ZY, Lang S, Wagner F, Witte L & Wray V (1984) Formation and identification of interfacial active glycolipids from resting microbial cells. App. and Environ. Microbiol. 48: 610–617Google Scholar
  16. Margaritis A, Zajic JE, Gerso DF (1979) Production and surface active properties of microbial surfactants. Biotechnol. and Bioeng. 21: 1151–1162Google Scholar
  17. Mulkins-Phillips GJ & Stewart JE (1974a) Effect of environmental parameters on bacterial degradation of Bunker C oil, crude oil, and hydrocarbons. App. Microbiol. 28: 915–922Google Scholar
  18. Mulkins-Phillips GJ & Stewart JE (1974b) Effect of four dispersants on biodegradation and growth of bacteria on crude oil. App. Microbiol. 28: 547–552Google Scholar
  19. Neufeld RJ & Zajic JE (1984) The surface activity of Acinetobacter calcoaceticus sp. 2CA2". Biotechnol. and Bioeng. 26: 1108–1113Google Scholar
  20. Packard TT (1971) The measurement of respiratory electron-transport activity in marine phytoplankton. J. Mar. Res. 29: 235–244Google Scholar
  21. Procedure NLIN (1987). SAS Release version 6 Edition, SAS Institute, Cary, NC, USAGoogle Scholar
  22. Reisfeld A, Rosenberg E, Gutnick D (1972) Microbial degradation of crude oil: Factors affecting the dispersion in sea water by mixed pure cultures. App. Microbiol. 24: 363–368Google Scholar
  23. Robichaux TJ & Myrick HN (1972) Chemical enhancement of the biodegradation of crude oil pollutants J. Petrol. Technol. 24: 16–20Google Scholar
  24. Rosenberg E, Legmann R, Kushamaro A, Taube R, Adler E & Ron EZ (1992) Petroleum bioremediation-A multiphase problem. Biodegradation 3: 337–350Google Scholar
  25. Salama IA, Koch GG & Tolley HD (1978) On the estimation of most probable number in a serial dilution technique. Commun. Stat. Theor. Methodol. A7: 1267–1282Google Scholar
  26. Schulz D, Passeri A, Schmidt M, Land S, Wagner F, Wray V & Gunkel G (1991) Marine biosurfactants I: Screening for biosurfactants among crude oil degrading marine microorganisms from the North sea. Z. Naturforsch 46 C: 197–203Google Scholar
  27. Venosa AD, Suidan MT, Wrenn BA, Strohmeier KL, Haines JR, Eberhart BL, King D, & Holder E (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware bay. Environ. Sci. and Technol. 30: 1764–1775Google Scholar
  28. Volkering F, Breure AM, van Andel JG & Rulkens WH Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 61: 1699–1705Google Scholar
  29. Walker JD, Petrakis L & Colwell RR (1976) Comparison of biodegradability of crude and fuel oils. Can. J. of Microbiol. 22: 598–602Google Scholar
  30. Westlake DWS, Jobson A, Phillippe R & Cook FD (1974) Biodegradability and crude oil composition. Can. J. of Microbiol. 20: 915–928Google Scholar
  31. Wodzinsky RS & LaRocca D (1977) Bacterial growth kinetics on diphenylmethane and napthalene-heptamethlynonane. App. Environ. Microbiol. 33: 660–665Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Farooq A. Uraizee
    • 1
    • 2
  • Albert D. Venosa
    • 1
  • Makram T. Suidan
    • 3
  1. 1.National Risk Management Research LaboratoryU.S. Environmental Protection AgencyCincinnatiUSA
  2. 2.Oak Ridge Institute for Science and EducationOak RidgeUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations