Designs, Codes and Cryptography

, Volume 10, Issue 1, pp 63–84 | Cite as

Classification of Some Optimal Ternary Linear Codes of Small Length

  • Marijn van Eupen
  • Petr Lisonvek

Abstract

A classification is given of some optimal ternary linear codes of small length. Dimension 2 is classified for every minimum distance. Dimension 3, 4 and 5 is classified up to minimum distance 12. For higher dimension a classification is given where possible.

ternary linear codes optimal codes finite geometry finite group action 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ball and A. Blokhuis, On the size of a double blocking set in PG(2, q), preprint.Google Scholar
  2. 2.
    R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhyā Ser. A, Vol. 8 (1947) pp. 107–166.Google Scholar
  3. 3.
    W. Bosma, J. J. Cannon and G. Mathews, Programming with algebraic structures: Design of the Magma language, In: M. Giesbrecht (ed), Proceedings of the 1994 International Symposium on Symbolic and Algebraic Computation, Oxford, July 20–22, 1994. Association for Computing Machinery, 1994, 52–57.Google Scholar
  4. 4.
    A. E. Brouwer and A. Schrijver, The blocking number of an affine space. J. Combin. Theory Ser. A. Vol. 24 (1978) pp. 251–253.Google Scholar
  5. 5.
    A. Bruen, Blocking sets in finite projective planes, SIAM J. Appl. Math., Vol. 21,No. 3 (1971) pp. 380–392.Google Scholar
  6. 6.
    C. J. Colbourn and R. C. Read, Orderly algorithms for generating restricted classes of graphs, J. Graph Th. Vol. 3 (1979) pp. 187–195.Google Scholar
  7. 7.
    M. van Eupen, Four non-existence results for ternary linear codes, to appear in IEEE Trans. Inf. Th..Google Scholar
  8. 8.
    M. van Eupen and R. Hill, An optimal ternary [69, 5, 45] code and related codes, Designs, Codes & Cryptography Vol. 4 (1994) pp. 271–282.Google Scholar
  9. 9.
    J. H. Griesmer, A bound for error-correcting codes, I.B.M. J. Res. Develop Vol. 4 (1960) pp. 532–542.Google Scholar
  10. 10.
    R. Grund, Symmetrieklassen von Abbildungen und die Konstruktion von diskreten Strukturen, Bayreuther Mathematische Schriften Vol. 31 (1992) pp. 19–54.Google Scholar
  11. 11.
    N. Hamada, Characterization of {(q | 1) | 2, 1; t, q} minihypers and {2(q + 1) + 2, 2; 2, q}-minihypers in a finite projective geometry, Graphs and Combinatorics Vol. 5 (1989) pp. 63–81.Google Scholar
  12. 12.
    N. Hamada, A survey of recent work on characterization of minihypers in PG(t, q) and nonbinary linear codes meeting the Griesmer bound, J. Combin. Inform. Syst. Sci. Vol. 18 (1993) pp. 161–191.Google Scholar
  13. 13.
    N. Hamada and T. Helleseth, A characterization of some {3υ2 + υ3, 3υ1 + υ2; 3, 3}-minihypers and some [15, 4, 9; 3]-codes with B 2 = 0, to appear in J. Statist. Plann. Inference.Google Scholar
  14. 14.
    N. Hamada, T. Helleseth and ø. Ytrehus, There are exactly two nonequivalent [20, 5, 12; 3]-codes, Ars Comb Vol. 35 (1993) pp. 3–14.Google Scholar
  15. 15.
    F. Harary and E. Palmer, Graphical Enumeration, Academic Press, New York (1973).Google Scholar
  16. 16.
    R. Hill, Caps and codes, Discr. Math. Vol. 22 (1978) pp. 111–137.Google Scholar
  17. 17.
    R. Hill and D. E. Newton, Some optimal ternary linear codes, Ars Comb. Vol. 25-A (1988) pp. 61–72.Google Scholar
  18. 18.
    R. Hill and D. E. Newton, Optimal ternary codes, Designs, Codes & Cryptography Vol. 2 (1992) pp. 137–157.Google Scholar
  19. 19.
    J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, Oxford (1979).Google Scholar
  20. 20.
    A. Kerber, Algebraic Combinatorics via Finite Group Actions, BI Wissenschaftsverlag, Mannheim (1991).Google Scholar
  21. 21.
    V. Krishnamurthy, Combinatorics: Theory and Applications, Ellis Horwood Ltd., Chichester (1986).Google Scholar
  22. 22.
    R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Vol. 20, Addison-Wesley, Reading, Massachusetts (1983).Google Scholar
  23. 23.
    R. C. Read, Every one a winner, Ann. Discr. Math. Vol. 2 (1978) pp. 107–120.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Marijn van Eupen
    • 1
  • Petr Lisonvek
    • 2
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.RISC-LinzJohannes Kepler UniversityLinzAustria

Personalised recommendations