Advertisement

Biodegradation

, Volume 8, Issue 5, pp 297–311 | Cite as

Ring cleavage of sulfur heterocycles: how does it happen?

  • David C. Bressler
  • Jason A. Norman
  • Phillip M. Fedorak
Article

Abstract

Sulfur heterocycles are common constituents ofpetroleum and liquids derived from coal, and they arefound in some secondary metabolites of microorganismsand plants. They exist primarily as saturated ringsand thiophenes. There are two major objectives drivinginvestigations of the microbial metabolism oforganosulfur compounds. One is the quest to develop aprocess for biodesulfurization of fossil fuels, andthe other is to understand the fates of organosulfurcompounds in petroleum- or creosote-contaminatedenvironments which is important in assessingbioremediation processes. For these processes to besuccessful, cleavage of different types of sulfurheterocyclic rings is paramount. This paper reviewsthe evidence for microbial ring cleavage of a varietyof organosulfur compounds and discusses the fewwell-studied cases which have shown that the C–S bondis most susceptible to breakage leading to disruptionof the ring. In most cases, the introduction of one ormore oxygen atom(s) onto the adjacent C atom and/oronto the S atom weakens the C–S bond, facilitating itscleavage. Although much is known about the thiophenering cleavage in dibenzothiophene, there is still agreat deal to be learned about the cleavage of othersulfur heterocycles.

benzothiophenes biodegradation biodesulfurization dibenzothiophenes thiacycloalkanes thiophenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulrashid N & Clark DP (1987) Isolation and genetic analysis of mutations allowing the degradation of furans and thiophenes by Escherichia coli. J. Bacteriol. 169: 1267–1271Google Scholar
  2. Andersson JT & Bobinger S (1992) Polycyclic aromatic sulfur heterocycles. II. Photochemical oxidation of benzo[b]thiophene in aqueous solution. Chemosphere 24: 383–388Google Scholar
  3. Atlas RM, Boehm PD & Calder JA (1981) Chemical and biological weathering of oil, from the Amoco Cadizspillage, within the littoral zone. Estuarine, Coastal Shelf Sci. 12: 589–608Google Scholar
  4. Baldwin JE, Adlington RM, Coates JB, Crabbe MJC, Crouch NP, Keeping JW, Knight GC, Schofield CJ, Ting H, Vallejo CA, Thorniley M & Abraham EP (1987) Purification and initial characterization of an enzyme with deacetoxycephalosporin C synthase and hydroxylase activities. Biochem. J. 245: 831–841Google Scholar
  5. Baldwin JE, Adlington RM, Crouch NP, Schofield CJ, Turner NJ & Aplin RT (1991) Cephalosporin biosynthesis: A branched pathway sensitive to an isotopic effect. Tetrahedron 47: 9881–9900Google Scholar
  6. Boehm PD, Fiest DL & Elskus A (1981) Comparative weathering patterns of hydrocarbons from theAmocoCadiz oil spill observed at a variety of coastal environments. Amoco Cadiz: Fates and effects of the oil spill. In: Proceedings of the International Symposium Centre Oceanologique de Bretagne. Brest (pp 159–173) Le centre national pour l'exploitation des oceans, ParisGoogle Scholar
  7. Bohlmann F, Burkhardt T & Zdero C (1973) Naturally Occurring Acetylenes. Academic Press, New YorkGoogle Scholar
  8. Bohonos N, Chou TW & Spanggord RJ (1977) Some observations on biodegradation of pollutants in aquatic systems. Jpn J. Antibiot. 30 (Suppl.): 275–285Google Scholar
  9. Chou CC & Swatloski RA (1983) Biodegradation of sulfolane in refinery wastewater. In: Proc. 37th Purdue Industrial Waste Conference (pp 559–566). Ann Arbor Science Publishers. Ann Arbor, MI.Google Scholar
  10. Chou CL (1990) Geochemistry of sulfur in coal. In: Orr WL & White CM (Eds) Geochemistry of Sulfur in Fossil Fuels (pp 30-52). ACS Books, WashingtonGoogle Scholar
  11. Christensen LP & Lam J (1990) Acetylenes and related compounds in Cynareae. Photochemistry 29: 2753–2785Google Scholar
  12. Cripps RE (1973) The microbial metabolism of thiophen-2carboxylate. Biochem. J. 134: 353–366Google Scholar
  13. Czogalla CD & Boberg F (1983) Sulfur compounds in fossil fuels I. Sulfur Reports 3: 121–167Google Scholar
  14. Dahlberg MD, Rohrer RL, Fauth DJ, Sprecher R & Olson GJ (1993) Biodesulfurization of dibenzothiophene sulfone by Arthrobactersp. and studies with oxidized Illinois No. 6 coal. Fuel 72: 1645–1649Google Scholar
  15. Denome SA, Oldfield C, Nash LJ & Young KD (1994) Characterization of the desulfurization genes from Rhodococcussp. strain IGTS8. J. Bacteriol. 176: 6707–6716Google Scholar
  16. Denome SA, Olson ES & Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcussp. strain IGTS8. Appl. Environ. Microbiol. 59: 2837–2843Google Scholar
  17. Eaton RW & Nitterauer JD (1994) Biotransformation of benzothiophene by isopropylbenzenedegrading bacteria. J. Bacteriol. 176: 3992–4002Google Scholar
  18. Evans JS & Venables WA (1990) Degradation of thiophene2carboxylate, furan2carboxylate, pyrrole2carboxylate and other thiophene derivatives by the bacterium VibrioYC1. Appl. Microbiol. Biotechnol. 32: 715–720Google Scholar
  19. Fedorak PM & Coy DL (1996) Biodegradation of sulfolane in soil and groundwater samples from a sour gas plant. Environ. Technol. 17: 1093–1102Google Scholar
  20. Fedorak PM, Coy DL & Peakman TM(1996) Microbial metabolism of some 2,5substituted thiophenes. Biodegradation. 7: 313–327Google Scholar
  21. Fedorak PM & GrbićGali ć D (1991) Aerobic microbial cometabolism of benzothiophene and 3methylbenzothiophene. Appl. Environ. Microbiol. 57: 932–940Google Scholar
  22. Fedorak PM, Payzant JD, Montgomery DS & Westlake DWS (1988) Microbial degradation of nalkyl tetrahydrothiophenes found in petroleum. Appl. Environ. Microbiol. 54: 1243–1248Google Scholar
  23. Fedorak PM & Peakman TM (1992) Aerobic microbial degradation of some alkylthiophenes found in petroleum. Biodegradation 2: 223–236Google Scholar
  24. Fedorak PM & Westlake DWS (1982) Microbial degradation of organic sulfur compounds in Prudhoe Bay crude oil. Can. J. Microbiol. 29: 291–296Google Scholar
  25. Fedorak PM & Westlake DWS (1984) Degradation of sulfur heterocycles in Prudhoe Bay crude oil by soil enrichments. Water, Air Soil Pollut. 21: 225–230Google Scholar
  26. Finnerty WR (1993) Organic sulfur biodesulfurization in nonaqueous media. Fuel 72: 1631–1634Google Scholar
  27. Foght JM, Fedorak PM, Gray MR & Westlake DWS (1990) Microbial desulfurization of liquid fossil fuels. In: Ehrlich HL & Brierly CL (Eds) Microbial MetalRecovery (pp 379–407).McGrawHill, New YorkGoogle Scholar
  28. Gary JH & Handwerk GE (1984) Petroleum Refining. 2nd Edition. (pp 130–135) Marcel Dekker, Inc. New YorkGoogle Scholar
  29. Goar BG (1971) Today's gastreating processes-1. Oil & Gas J. 69(28): 75–78Google Scholar
  30. Gray KA, Pogrebinsky OS, Mrachko T, Xi L, Monticello DJ & Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nature Biotechnol. 14: 1705–1709Google Scholar
  31. GrbićGali ć D (1989) Microbial degradation of homocyclic and heterocyclic aromatic hydrocarbons under anaerobic conditions. Dev. Ind. Microbiol. 30: 237–253Google Scholar
  32. Grimalt JO, Grifoll M, Solanas AM & Albaigés J. (1991) Microbial degadation of marine evaporitic crude oils. Geochim. Cosmochim. Acta. 55: 1903–1913Google Scholar
  33. Hostettler FD & Kvenvolden KA (1994) Geochemical changes in crude oil spilled from the Exxon Valdezsupertanker into Prince William Sound, Alaska. Org. Geochem. 21: 927–936Google Scholar
  34. Isbister JD,WyzaR, Lippold J, DeSouza A & Anspach G (1988) Bioprocessing of coal, In: Omenn GS (Ed), Environmental Biotechnology, Reducing Risks from Environmental Chemicals through Biotechnology (pp 281–293). Plenum Press, New YorkGoogle Scholar
  35. Jacob J (1990) Sulfur Analogues of Polycyclic Aromatic Hydrocarbons (Thiaarenes). Cambridge University Press. CambridgeGoogle Scholar
  36. Jensen SE & Demain AL (1995) Betalactams, In: Vining LC & Stuttard C (Eds) Genetics and Biochemistry of Antibiotic Production (pp. 239–268). ButterworthHeinemann, TorontoGoogle Scholar
  37. Jones WD & Chin RM (1994) Carbonsulfur bond cleavage by cobalt. Reaction of Cp*Co(C2H4)2 with dibenzothiophene. J. Organomet. Chem. 472: 311–316Google Scholar
  38. Kanagawa T & Kelly DP (1987) Degradation of substituted thiophenes by bacteria isolated from activated sludge. Microb. Ecol. 13: 47–57Google Scholar
  39. Kargi F & Robinson JM (1984) Microbial oxidation of dibenzothiophene by the thermophilic organism Sulfolobus acidocaldarius.Biotechnol. Bioeng. 26: 687–690Google Scholar
  40. Kayser KJ, BielagaJones BA, Jackowski K, Odusan O & Kilbane JJ (1993) Utilization of organosulfur compounds by axenic and mixed cultures of Rhodococcus rhodochrousIGTS8. J. Gen. Microbiol. 139: 3123–3129Google Scholar
  41. Kilbane JJ & Jackowski K (1992) Biodesulfurization of watersoluble coalderived material by Rhodococcus rhodochrousIGTS8. Biotechnol. Bioeng. 40: 1107–1114Google Scholar
  42. Kim TS, Kim HY & Kim BH (1990a) Petroleum desulfuriazation by Desulfovibrio desulfuricansM6using electrochemically supplied reducing equivalent. Biotechnol. Lett. 10: 757–760Google Scholar
  43. Kim HY, Kim TS & Kim BH (1990b) Degradation of organic sulfur compounds and the reduction of dibenzothiophene to biphenyl and hydrogen sulfide by Desulfovibrio desulfuricansM6. Biotechnol. Lett. 10: 761–764Google Scholar
  44. Kitchell JP, Nochur SV, Marquis JK, Bazylinski DA & Jannasch H (1991) Microbial oxidation of sulfur in dibenzothiophene. Resour. Conserv. Recycl. 5: 255–263Google Scholar
  45. Kodama K, Nakatani S, Umehara K, Shimizu K, Minoda Y & Yamada K (1970) Microbial conversion of petrosulfur compounds. Part III. Isolation and identification of products from dibenzothiophene. Agric. Biol. Chem. 34: 1320–1324Google Scholar
  46. Kodama K,Umehara K, Shimizu K, Nakatani S, Minoda Y & Yamada K (1973) Identification of microbial products from dibenzothiophene and its proposed oxidation pathway.Agric. Biol. Chem. 37: 45–50Google Scholar
  47. Krawiec S (1990) Bacterial desulfurization of thiophenes: screening techniques and some speculations regarding biochemical and genetic bases. Dev. Ind. Microbiol. 31: 103–114Google Scholar
  48. Kropp KG, Andersson JT & Fedorak PM (1997a) Biotransformations of three dimethyldibenzothiophenes by pure andmixed bacterial cultures. Environ. Sci. Technol. 31: 1547–1554Google Scholar
  49. Krop KG, Andersson JT & Fedorak PM (1997b) Bacterial transformations of 1,2,3,4.tetrahydrodibenzothiophene and dibenzothiophene. Appl. environ. Microbiol. 63: 3032–3042Google Scholar
  50. Kropp KG, Gonçalves JA, Andersson JT, & Fedorak PM (1994) Bacterial transformations of benzothiophene and methylbenzothiophenes. Environ. Sci. Technol. 28: 1348–1356Google Scholar
  51. Kropp KG, Saftić S, Andersson JT & Fedorak PM (1996) Transformations of six isomers of dimethylbenzothiophenes by three Pseudomonasstrains. Biodegradation 7: 203–221Google Scholar
  52. Kurita S, Endo T, Nakamura H, Yagi T, & Tamiya N (1971) Decomposition of some organosulfur compounds in petroleum by anaerobic bacteria. J. Gen. Appl. Microbiol. 17: 185–198Google Scholar
  53. Laborde AL & Gibson DT (1977) Metabolism of dibenzothiophene by a Beijerinkiaspecies. Appl. Environ. Microbiol. 34: 783–790Google Scholar
  54. Laseter JL, Lawler GC, Overton EB, Patel JR, Holmes JP, Shields MI & Maberry M (1981) Characterization of aliphatic and aromatic hydrocarbons in Flat and Japanese type oysters and adjacent sediments collected from L'Aber Wrach'h following the Amoco Cadiz: oil spill. In: Amoco Cadiz: Fates and effects of the oil spill. Proceedings of the International Symposium Centre Oceanologique de Bretagne. Brest (pp 633–644) Le centre national pour l'exploitation des oceans, ParisGoogle Scholar
  55. Lee MK, Senius JD & Grossman MJ (1995) Sulfurspecific microbial desulfurization of sterically hindered analogs of dibenzothiophene. Appl. Environ. Microbiol. 61: 4362–4366Google Scholar
  56. Li MZ, Squires CH, Monticello DJ & Childs JD (1996) Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolisIGTS8. J. Bacteriol. 178: 4609–6418Google Scholar
  57. Lide DR (1995) CRC Handbook of Chemistry and Physics 76th Ed. Chemical Rubber Company. Boca Raton, FLGoogle Scholar
  58. Lizama HM, Wilkins LA & Scott TC (1995) Dibenzothiophene sulfur can serve as the sole electron acceptor during growth of sulfatereducing bacteria. Biotechnol. Lett. 17: 113–116Google Scholar
  59. McLeod DW, Lin CY, Ying WC & Tucker ME (1992) Biological activated carbon for removing sulfolane from groundwater. In: Proc. 46th Purdue Industrial Waste Conference (pp 99–111). Lewis Publishers, Ann Arbor, MIGoogle Scholar
  60. Monticello DJ (1994) Biocatalytic desulfurization, the biorefining of petroleum fractions. Hydrocarbon Processing 73(2): 39–45Google Scholar
  61. Monticello DJ, Bakker D & Finnerty WR (1985) Plasmidmediated degradation of dibenzothiphene by Pseudomonasspecies. Appl. Environ. Microbiol. 49: 756–760Google Scholar
  62. Monticello DJ & Finnerty WR (1985) Microbial desulfurization of fossil fuels. Ann. Rev. Microbiol. 39: 371–389Google Scholar
  63. Monticello DJ, Murphy S & Johnson S (1995) Biorefining and microbial desulfurization: the upgrading of crude oil and bitumen. In: Lortie L, Gould WD & Stichbury M (Eds) Proceedings 12th Annual Meeting of BIOMINET. (pp. 133–154) November 9, 1995. Calgary, CanadaGoogle Scholar
  64. Moriya K & Horikoshi K (1993) Abenzenetolerant bacteriumutilizing sulfur compounds isolated from deep sea. J. Ferment. Bioeng. 76: 397–399Google Scholar
  65. Myers AW, Jones WD & McClements SM (1995) Regiochemical selectivity in the carbonsulfur bond cleavage of 2methylbenzothiophene: Synthesis, characterization and mechanistic study of reversible insertion into a C-S bond. J. Am. Chem. Soc. 117: 11704–11709Google Scholar
  66. Ogata M & Fujisawa K (1985) Organic sulfur compounds and polycyclic hydrocarbons transferred to oyster and mussel from petroleum suspension. Identification by gas chromatography and capillary mass spectrometry. Water Res. 19: 107–118Google Scholar
  67. Ohshiro T, Hirata T & I zumi Y (1996) Desulfurization of dibenzothiophene derivatives by whole cells of Rhodococcus erythropolisH-2. FEMS Microbiol. Lett. 142: 65–70Google Scholar
  68. Olson ES, Stanley DC & Gallagher JR (1993) Characterization of intermediates in the microbial desulfurization of dibenzothiophene. Energy Fuels 7: 159–164Google Scholar
  69. Payzant JD, McIntyre DD, Mojelsky TW, Torres M, Montgomery DS & Strausz OP (1989a) The identification of homologous series of thiolanes and thianes possessing a linear carbon framework from petroleums and their interconversion under simulated geological conditions. Org. Geochem. 14: 461–473Google Scholar
  70. Payzant JD, Mojelsky TW & Strausz OP (1989b) Improved methods for the selective isolation of the sulfide and thiophenic classes of compounds from petroleum. Energy Fuels 3: 449–454Google Scholar
  71. Piddington CS, Kovacevich BR & Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcussp. strain IGTS8. Appl. Environ. Microbiol. 61: 468–475Google Scholar
  72. Rhodes AK (1995) Enzymes desulfurizing diesel fuel in pilot plant tests. Oil & Gas J. 93(20): 39–40Google Scholar
  73. Roberts DW & Williams DL (1987) Sultone Chemistry. Tetrahedron 43: 1027–1062Google Scholar
  74. Sabbah R (1979) Thermodynamique de substances soufrées. I. é tude thermochimique du benzo2,3 thioph`ene et du dibenzothioph`ene. Bull. Soc. Chim. France. I434–I437Google Scholar
  75. Saftić S, Fedorak PM & Andersson JT (1992) Diones, sulfoxides and sulfones from the aerobic cometabolism of methylbenzothiophenes by Pseudomonasstrain BT1. Environ. Sci. Technol. 26: 1759–1764Google Scholar
  76. Saftić S, Fedorak PM & Andersson JT (1993) Transformations of methyldibenzothiophenes by three Pseudomonasisolates. Environ. Sci. Technol. 27: 2577–2584Google Scholar
  77. Schmid JC, Connon J & Albrecht P (1987) Occurrence and geochemical significance of longchain dialkylcyclopentanes. Nature 329: 54–56Google Scholar
  78. Schulte KE, R¨ucker G & Meinders W (1965) The formation of methyl propynylthienylacrylate from dihydromatricaria ester in Chrysanthemum vulgare. Tetrahedron Lett. 11: 659–661Google Scholar
  79. Selifonov SA, Grifoll M, Eaton RW & Chapman PJ (1996) Oxidation of naphthenoaromatic and methylsubstitued aromatic compounds by naphthalene 1,2dioxygenase. Appl. Environ. Microbiol. 62: 507–514Google Scholar
  80. Shennan JL (1996) Microbial attack on sulphurcontaining hydrocarbons: Implications for the biodesulphurization of oils and coals. J. Chem. Tech. Biotechnol. 67: 109–123Google Scholar
  81. Sinninghe Damsté JS & de Leeuw JW (1989) Analysis, structure and geochemical significance of organicallybound sulphur in the geosphere: State of the art and future research. Org. Geochem. 16: 1077–1101Google Scholar
  82. Sinninghe Damsté JS, de Leeuw JW, Kockvan Dalen AC, de Zeeuw MA, de Lange F, Rijpstra WIC & Schenck PA (1987) The occurrence and identification of series of organic sulphur compounds in oils and sediments. I. A study of Rozel Point oil (U.S.A.). Geochim. Cosmochim. Acta. 51: 2369–2391Google Scholar
  83. Sinninghe Damsté JS, Rijpstra WIC, de Leeuw JW & Schenck PA (1989) The occurrence and identification of series of organic sulphur compounds in oils and sediment extracts. II. Their presence in the samples from hypersaline and nonhypersaline depositional environments and possible application as source, maturity and palaeoenvironmental indicators. Geochim. Cosmochim.Acta. 53: 1323–1341Google Scholar
  84. Speight JG (1980) The Chemistry and Technology of Petroleum. Marcel Dekker Inc., New YorkGoogle Scholar
  85. Taylor NA, Hugill JA, van Kessel MM & Verburg RPJ (1991) Gasdesulfurization plant handles wide range of sour gas compositions. Oil & Gas J. 89(33): 57–59Google Scholar
  86. van Afferden M, Schacht S, Klein J & Tr¨uper HG (1990) Degradation of dibenzothiophene byBrevibacteriumsp. DO. Arch Microbiol. 153: 324–328Google Scholar
  87. van Afferden M, Tappe D, Beyer M, Tr¨uper HG & Klein J (1993) Biochemical mechanisms for the desulfurization of coalrelevant organic sulfur compounds. Fuel 72: 1635–1643Google Scholar
  88. Vedeneyev VI, Gurvich LV, Kondrat'yev VN, Medvedev VA & Frankevich YL (1966) Bond Energies, Ionization Potentials and Electron Affinities. St. Martin's Press. New YorkGoogle Scholar
  89. Wang Z, Fingas M & Sergy G (1994) Study of 22 yearold oil samples using biomarker compounds by GC/MS. Environ. Sci. Technol. 28: 1733–1746Google Scholar
  90. Zechmeister L & Sease JW (1947) A bluefluorescing compound, terthienyl, isolated from marigolds. J. Am. Chem. Soc. 69: 273–275Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • David C. Bressler
    • 1
  • Jason A. Norman
    • 1
  • Phillip M. Fedorak
    • 1
  1. 1.Department of Biological ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations