Journal of Logic, Language and Information

, Volume 8, Issue 2, pp 187–203 | Cite as

Reasoning about Minimal Knowledge in Nonmonotonic Modal Logics

  • Riccardo Rosati


We study the problem of embedding Halpern and Moses's modal logic of minimal knowledge states into two families of modal formalism for nonmonotonic reasoning, McDermott and Doyle's nonmonotonic modal logics and ground nonmonotonic modal logics. First, we prove that Halpern and Moses's logic can be embedded into all ground logics; moreover, the translation employed allows for establishing a lower bound (Π3p) for the problem of skeptical reasoning in all ground logics. Then, we show a translation of Halpern and Moses's logic into a significant subset of McDermott and Doyle's formalisms. Such a translation both indicates the ability of Halpern and Moses's logic of expressing minimal knowledge states in a more compact way than McDermott and Doyle's logics, and allows for a comparison of the epistemological properties of such nonmonotonic modal formalisms.

Knowledge representation nonmonotonic reasoning epistemic modal logics computational complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cadoli, M. and Schaerf, M., 1993, “A survey of complexity results for nonmonotonic logics,” Journal of Logic Programming 17, 127–160.Google Scholar
  2. Donini, F.M., Nardi, D., and Rosati, R., 1995, “Non-first-order features in concept languages,” pp. 91–102 in Proceedings of AI*IA-95, G. Soda, ed., Lecture Notes in Artificial Intelligence, Vol. 992, Berlin: Springer-Verlag.Google Scholar
  3. Donini, F.M., Nardi, D., and Rosati, R., 1997, “Ground nonmonotonic modal logics,” Journal of Logic and Computation 7(4), 523–548.Google Scholar
  4. Eiter, T. and Gottlob, G., 1995, “On the computational cost of disjunctive logic programming: Propositional case,” Annals of Mathematics and Artificial Intelligence 15(3, 4), 289–323.Google Scholar
  5. Engelfriet, J., 1996, “Minimal temporal epistemic logic,” Notre Dame Journal of Formal Logic 37(2), 233–259.Google Scholar
  6. Gottlob, G., 1992, “Complexity results for nonmonotonic logics,” Journal of Logic and Computation 2, 297–425.Google Scholar
  7. Gottlob, G., 1993, “Translating default logic into standard autoepistemic logic,” Journal of ACM 42(4), 711–740.Google Scholar
  8. Halpern, J.Y. and Moses, Y., 1985, “Towards a theory of knowledge and ignorance: Preliminary report,” Technical Report CD-TR 92/34, IBM.Google Scholar
  9. Hughes, G.E. and Cresswell, M.J., 1968, An Introduction to Modal Logic, London: Methuen.Google Scholar
  10. Johnson, D.S., 1990, “A catalog of complexity classes,” pp. 67–161 in Handbook of Theoretical Computer Science, Vol. A, J. van Leeuwen, ed., Amsterdam: Elsevier Science Publishers/North Holland.Google Scholar
  11. Konolige, K., 1988, “On the relationship between default and autoepistemic logic,” Artificial Intelligence Journal 35, 343–382.Google Scholar
  12. Lifschitz, V., 1991, “Nonmonotonic databases and epistemic queries,” pp. 381–386 in Proceedings of IJCAI-91, Sydney, D. Driankow, P.W. Eklund, and A.L. Ralescu, eds., Berlin: Springer-Verlag.Google Scholar
  13. Lin, F. and Shoham, Y., 1992, “Epistemic semantics for fixed-point non-monotonic logics,” Artificial Intelligence Journal 57, 271–289.Google Scholar
  14. Lin, F. and Shoham, Y., 1998, “On non-forgetting and minimal learning,” in Proceedings of the 1993. International Colloquium on Cognitive Science, N. Asher, K. Korta, and J. Ezquerro, eds., Dordrecht: Kluwer Academic Publishers, to appear.Google Scholar
  15. Marek, W. and Truszczyński, M., 1993, Nonmonotonic Logics - Context-Dependent Reasoning, Berlin: Springer-Verlag.Google Scholar
  16. McDermott, D., 1982, “Non-monotonic logic II: Non-monotonic modal theories,” Journal of the ACM 29, 33–57.Google Scholar
  17. McDermott, D. and Doyle, J., 1980, “Non-monotonic logic I,” Artificial Intelligence Journal 13, 41–72.Google Scholar
  18. Meyer, J.-J.Ch. and van der Hoek, W., 1995a, “A default logic based on epistemic states,” Fundamenta Informaticae 23(1) 33–65.Google Scholar
  19. Meyer, J.-J.Ch. and van der Hoek, W., 1995b, Epistemic Logic for AI and Computer Science, Cambridge: Cambridge University Press.Google Scholar
  20. Moore, R.C., 1985, “Semantical considerations on nonmonotonic logic,” Artificial Intelligence Journal 25, 75–94.Google Scholar
  21. Nardi, D. and Rosati, R., 1995, “A preference semantics for ground nonmonotonic modal logics,” pp. 225–236 in Proceedings of EPIA-95, C. Pinto-Ferreira and N. Mamede, eds., Lecture Notes in Artificial Intelligence, Vol. 990, Berlin: Springer-Verlag.Google Scholar
  22. Rosati, R., 1997a, “Reasoning with minimal belief and negation as failure: Algorithms and complexity,” pp. 430–435 in Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), Cambridge, MA: MIT Press.Google Scholar
  23. Rosati, R., 1997b, “Complexity of only knowing: The propositional case,” pp. 76–91 in Proceedings of the Fourth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-97), J. Dix, U. Furbach, and A. Nerode, eds., Lecture Notes in Artificial Intelligence, Vol. 1265, Berlin: Springer-Verlag.Google Scholar
  24. Schwarz, G., 1990, “Autoepistemic modal logics,” pp. 97–109 in Proceedings of TARK-90, R. Parikh, ed., San Mateo, CA: Morgan Kaufmann.Google Scholar
  25. Schwarz, G., 1991, “Autoepistemic logic of knowledge,” pp 260–274 in Proceedings of LPNMR-91, A. Nerode, V. Marek, and V.S. Subrahmanien, eds., Cambridge, MA: MIT Press.Google Scholar
  26. Schwarz, G., 1992a, “Minimal model semantics for nonmonotonic modal logics,” pp. 34–43 in Proceedings of LICS-92, New York: IEEE Computer Society Press.Google Scholar
  27. Schwarz, G., 1992b, “Bounding introspection in nonmonotonic logics,” pp. 581–590 in Proceedings of KR-92, B. Nebel, C. Rich, and W. Swertout, eds., Los Altos, CA: Morgan Kaufmann.Google Scholar
  28. Schwarz, G. and Truszczyński, M., 1994, “Minimal knowledge problem: A new approach,” Artificial Intelligence Journal 67, 113–114.Google Scholar
  29. Segerberg, K., 1971, An Essay in Classical Modal Logic, Filosofiska Studier, Vol. 13, Uppsala, Sweden: Uppsala University.Google Scholar
  30. Shoham, Y., 1987, “Nonmonotonic logics: Meaning and utility,” pp. 388–392 in Proceedings of IJCAI-87, J. McDermott, ed., San Mateo, CA: Morgan Kaufmann.Google Scholar
  31. Tiomkin, M. and Kaminski, M., 1990, “Nonmonotonic default modal logics,” pp. 73–84 in Proceedings of TARK-90, R. Parikh, ed., San Mateo, CA: Morgan Kaufmann.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Riccardo Rosati
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”RomaItaly (E-mail

Personalised recommendations