1.

B. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin, “Wavelets for the fast solution of second-kind integral equations,”

*SIAM J. on Scient. Comput.*, vol. 14, no. 1, 1993, pp. 159–184.

Google Scholar2.

M. Bertero, C. De Mol, and E. R. Pike, “Linear inverse problems with discrete data. I: General formulation and singular system analysis,”

*Inverse Problems*, vol. 1, 1985, pp. 301–330.

Google Scholar3.

M. Bertero, C. De Mol, and E. R. Pike, “Linear inverse problems with discrete data. II: Stability and regularisation,”

*Inverse Problems*, vol. 4, 1988, pp. 573–594.

Google Scholar4.

G. Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transforms and numerical algorithms I,”

*Communications on Pure and Applied Mathematics*, vol. 44, 1991, pp. 141–183.

Google Scholar5.

Y. Bresler, J. A. Fessler, and A. Macovski, “A Bayesian approach to reconstruction from incomplete projections of a multiple object 3D domain,”

*IEEE Trans. on Pattern Analysis and Machine Intelligence*, vol. 11, no. 8, 1989, pp. 840–858.

Google Scholar6.

K. E. Brewer and S. W. Wheatcraft, “Including multi-scale information in the characterization of hydraulic conductivity distributions,” In E. Foufoula-Georgiou and P. Kumar (eds.), *Wavelets in Geophysics*, vol. 4 of *Wavelet Analysis and its Applications*, pp. 213–248. Academic Press, 1994.

7.

S. R. Brown, “Transport of fluid and electric current through a single fracture,”

*Journal of Geophysical Research*, vol. 94, no. B7, 1989, pp. 9429–9438.

Google Scholar8.

W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method,”

*IEEE Trans. Medical Imaging*, vol. 9, no. 2, pp. 218–225, 1990.

Google Scholar9.

W. C. Chew,

*Waves and Fields in Inhomogeneous Media*, New York: Van Nostrand Reinhold, 1990.

Google Scholar10.

K. C. Chou, S. A. Golden, and A. S. Willsky, “Multiresolution stochastic models, data fusion and wavelet transforms,” Technical Report LIDS-P-2110, MIT Laboratory for Information and Decision Systems, 1992.

11.

K. C. Chou, A. S. Willsky, and R. Nikoukhah, “Multiscale recursive estimation, data fusion, and regularization,”

*IEEE Trans. Automatic Control*, vol. 39, no. 3, 1994, pp. 464–478.

Google Scholar12.

K. C. Chou, A. S. Willsky, and R. Nikoukhah, “Multiscale systems, Kalman filters, and Riccati equations,”

*IEEE Trans. Automatic Control*, vol. 39, no. 3, 1994, pp. 479–492.

Google Scholar13.

D. J. Crossley and O. G. Jensen, “Fractal velocity models in refraction seismology,” In C. H. Scholtz and B. B. Mandelbrot (eds.), *Fractals in Geophysics*, pp. 61–76. Birkhauser, 1989.

14.

I. Daubechies, “Orthonormal bases of compactly supported wavelets,”

*Communications on Pure and Applied Mathematics*, vol. 41, 1988, pp. 909–996.

Google Scholar15.

A. J. Devaney, “Geophysical diffraction tomography,”

*IEEE Trans. on Geoscience and Remote Sensing*, vol. GE-22, no. 1, 1984, pp. 3–13.

Google Scholar16.

A. J. Devaney and G. A. Tsihrintzis, “Maximum likelihood estimation of object location in diffraction tomography,”

*IEEE Trans. ASSP*, vol. 39, no. 3, 1991, pp. 672–682.

Google Scholar17.

A. J. Devaney and G. A. Tsihrintzis, “Maximum likelihood estimation of object location in diffraction tomography, part II: Strongly scattering objects,”

*IEEE Trans. ASSP*, vol. 39, no. 6, 1991, pp. 1466–1470.

Google Scholar18.

D. C. Dobson, “Estimates on resolution and stabilization for the linearized inverse conductivity problem,”

*Inverse Problems*, vol. 8, 1992, pp. 71–81.

Google Scholar19.

D. C. Dobson and F. Santosa, “An image-enhancement technique for electrical impedance tomography,”

*Inverse Problems*, vol. 10, 1994, pp. 317–334.

Google Scholar20.

D. C. Dobson and F. Santosa, “Resolution and stability analysis of an inverse problem in electrical impedance tomography: Dependence on the input current patterns,” *SIAM J. Appl. Math.*, vol. 54, no. 6, pp. 1542–1560.

21.

P. Flandrin, “Wavelet analysis and synthesis of fractional Brownian motion,” *IEEE Trans. Information Theory*, vol. 38, no. 2, pp. 910–917.

22.

D. G. Gisser, D. Isaacson, and J. C. Newell, “Electric current computed tomography and eigenvalues,” *SIAM J. Appl. Math.*, vol. 50, no. 6, pp. 1623–1634.

23.

T. M. Habashy, W. C. Chew, and E. Y. Chow, “Simultaneous reconstruction of permittivity and conductivity profiles in a radially inhomogeneous slab,” *Radio Science*, vol. 21, no. 4, pp. 635–645.

24.

T. M. Habashy, E. Y. Chow, and D. G. Dudley, “Profile inversion using the renormalized source-type integral equation approach,” *IEEE Transactions on Antennas and Propagation*, vol. 38, no. 5, pp. 668–682.

25.

T. M. Habashy, R. W. Groom, and B. R. Spies, “Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering,” *Journal of Geophysical Research*, vol. 98, no. B2, pp. 1759–1775.

26.

R. F. Harrington, *Field Computations by Moment Methods*, Macmillan Publ. Co., 1968.

27.

J. H. Hippler, H. Ermert, and L. von Bernus, “Broadband holography applied to eddy current imaging using signals with multiplied phases,” *Journal of Nondestructive Evaluation*, vol. 12, no. 3, pp. 153–162.

28.

S. L. Horowitz and T. Pavlidis, “Picture segmentation by a tree traversal algorithm,”

*Journal of the ACM*, vol. 23, no. 2, 1976, pp. 368–388.

Google Scholar29.

D. Isaacson, “Distinguishability of conductivities by electrical current computed tomography,”

*IEEE Trans. on Medical Imaging*, vol. MI-5, no. 2, 1986, pp. 91–95.

Google Scholar30.

D. Isaacson and M. Cheney, “Current problems in impedance imaging,” In D. Colton, R. Ewing, and W. Rundell (eds.), *Inverse Problems in Partial Differential Equations*, Ch. 9, pp. 141–149. SIAM, 1990.

31.

D. Isaacson and M. Cheney, “Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms,”

*SIAM J. Appl. Math.*, vol. 51, no. 6, 1991, 1705–1731.

Google Scholar32.

D. L. Jaggard, “On fractal electrodynamics,” In H. N. Kritikos and D. L. Jaggard (eds.), *Recent Advances in Electromagnetic Theory*, pp. 183–224. Springer-Verlag, 1990.

33.

J. M. Lees and P. E. Malin, “Tomographic images of

*p*wave velocity variation at Parkfield, California,”

*Journal of Geophysical Research*, vol. 95, no. B13, 1990, pp. 21,793–21,804.

Google Scholar34.

V. Liepa, F. Santosa, and M. Vogelius, “Crack determination from boundary measurements—Reconstruction using experimental data,”

*Journal of Nondestructive Evaluation*, vol. 12, no. 3, 1993, pp. 163–174.

Google Scholar35.

S. G. Mallat, “A theory of multiresolution signal decomposition: The wavelet representation,”

*IEEE Trans. PAMI*, vol. 11, no. 7, 1989, pp. 674–693.

Google Scholar36.

J. M. Beaulieu and M. Goldberg, “Hierarchy in picture segmentation: A stepwise optimization approach,”

*IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 11, no. 2, 1989, pp. 150–163.

Google Scholar37.

E. L. Miller, “The application of multiscale and statistical techniques to the solution of inverse problems,” Technical Report LIDS-TH-2258, MIT Laboratory for Information and Decision Systems, Cambridge, 1994.

Google Scholar38.

E. L. Miller, “A scale-recursive, statistically-based method for anomaly characterization in images based upon observations of scattered radiation,” In *1995 IEEE International Conference on Image Processing*, 1995.

39.

E. L. Miller and A. S. Willsky, “A multiscale approach to sensor fusion and the solution of linear inverse problems,”

*Applied and Computational Harmonic Analysis*, vol. 2, 1995, pp. 127–147.

Google Scholar40.

E. L. Miller and A. S. Willsky, “Multiscale, statistically-based inversion scheme for the linearized inverse scattering problem,”

*IEEE Trans. on Geoscience and Remote Sensing*, March 1996, vol. 36, no. 2, pp. 346–357.

Google Scholar41.

E. L. Miller and A. S. Willsky, “Wavelet-based, stochastic inverse scattering methods using the extended Born approximation,” In *Progress in Electromagnetics Research Symposium*, 1995. Seattle, Washington.

42.

J. Le Moigne and J. C. Tilton, “Refining image segmentation by integration of edge and region data,”

*IEEE Trans. on Geoscience and Remote Sensing*, vol. 33, no. 3, 1995, pp. 605–615.

Google Scholar43.

J. E. Molyneux and A. Witten, “Impedance tomography: imaging algorithms for geophysical applications,”

*Inverse Problems*, vol. 10, 1994, pp. 655–667.

Google Scholar44.

D. J. Rossi and A. S. Willsky, “Reconstruction from projections based on detection and estimation of objects- parts I and II: Performance analysis and robustness analysis,”

*IEEE Trans. on ASSP*, vol. ASSP-32, no. 4, 1984, pp. 886–906.

Google Scholar45.

K. Sauer, J. Sachs, Jr., and C. Klifa, “Bayesian estimation of 3D objects from few radiographs,”

*IEEE Trans. Nuclear Science*, vol. 41, no. 5, 1994, pp. 1780–1790.

Google Scholar46.

A. Schatzberg, A. J. Devaney, and A. J. Witten, “Estimating target location from scattered field data,”

*Signal Processing*, vol. 40, 1994, pp. 227–237.

Google Scholar47.

A. H. Tewfick and M. Kim, “Correlation structure of the discrete wavelet coefficients of fractional Brownian motion,” *IEEE Trans. Information Theory*, vol. 38, no. 2, pp. 904–909.

48.

C. Torres-Verdin and T. M. Habashy, “Rapid 2.5-D forward modeling and inversion via a new nonlinear scattering approximation,” *Radio Science*, 1994, pp. 1051–1079.

49.

H. L. Van Trees,

*Detection, Estimation and Modulation Theory: Part I*. New York: John Wiley and Sons, 1968.

Google Scholar50.

G. W. Wornell, “A Karhuenen-Loeve-like expansion for 1/

*f*processes via wavelets,”

*IEEE Transactions on Information Theory*, vol. 36, 1990, pp. 859–861.

Google Scholar