Journal of Biomolecular NMR

, Volume 12, Issue 1, pp 89–107 | Cite as

Complete assignment of 1H, 13C and 15N chemical shifts for bovine β-lactoglobulin: Secondary structure and topology of the native state is retained in a partially unfolded form

  • Stanislava Uhrínová
  • Dušan Uhrín
  • Helen Denton
  • Mark Smith
  • Lindsay Sawyer
  • Paul N. Barlow
Article

Abstract

Although β-lactoglobulin (β-LG) has been studied extensively for more than 50 years, its physical properties in solution are not yet understood fully in terms of its three-dimensional (3D) structure. For example, despite a recent high-resolution crystal structure, it is still not clear why the two common variants of bovine β-LG which differ by just two residues have different aggregation properties during milk processing. We have conducted solution-state NMR studies on a recombinant form of the A variant of β-LG at low pH conditions where the protein is partially unfolded and exists as a monomer rather than a dimer. Using a13 C,15N-labelled sample, expressed in Pichia pastoris, we have employed the standard combination of 3D heteronuclear NMR techniques to obtain near complete assignments of proton, carbon and nitrogen resonances. Using a novel pulse sequence we were able to obtain additional assignments, in particular those of methyl groups in residues preceding proline within the sequence. From chemical shifts and on the basis of inter-residue NOEs, we have inferred the secondary structure and topology of monomeric β-LG A. It includes eight antiparallel β-strands arranged in a barrel, flanked by an α-helix, which is typical of a member of the lipocalin family. A detailed comparison with the crystal structure of the dimeric form (for a mixture of A and B variants) at pH 6.5 reveals a close resemblance in both secondary structure and overall topology. Both forms have a ninth β-strand which, at the higher pH, forms part of the dimer interface. These studies represent the first full NMR assignment of β-LG and will form the basis for a complete characterisation of the solution structure and dynamics of this protein and its variants.

β-lactoglobulin; methyl-containing residues; modified HCCH-TOCSY; partially folded form; side-chain assignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, C.H., Xia, T.-H., Billeter, M., Güntert, P. and Wüthrich, K. (1995) J. Biomol. NMR, 5, 1–10.Google Scholar
  2. Bax, A. and Subramanian, S. (1986) J. Magn. Reson., 67, 565–569.Google Scholar
  3. Bocskei, Z., Groom, C.P., Flower, D.R., Wright, C.E., Cavaggioni, A., Findlay, J.B. and North, A.C.T. (1992) Nature, 360, 186–188.Google Scholar
  4. Brownlow, S., Cabral, J.H.M., Cooper, R., Flower, D.R., Yewdall, S.J., Polikarpov, I., North, A.C.T. and Sawyer, L. (1997) Structure, 5, 481–495.Google Scholar
  5. Cowan, S.W., Newcomer, M.E. and Jones, T.A. (1990) Proteins, 8, 44–61.Google Scholar
  6. Domke, T. and Leibfritz, D. (1990) J. Magn. Reson., 88, 401–405.Google Scholar
  7. Engelke, J. and Rüterjans, H. (1995) J. Magn. Reson., B109, 318–322.Google Scholar
  8. Fink, A.L., Calciano, L.J., Goto, Y., Kurotsu, T. and Palleros, D. (1994) Biochemistry, 33, 12504–12511.Google Scholar
  9. Flower, D.R., North, A.C.T., and Attwood, T.K. (1993) Protein Sci., 2, 753–761.Google Scholar
  10. Fox, P.F. (1995) Heat Induced Changes in Milk, 2nd ed., International Dairy Federation, Brussels.Google Scholar
  11. Gardner, K.H., Konrat, R., Rosen, M.K. and Kay, L.E. (1996) J. Biomol. NMR, 8, 351–356.Google Scholar
  12. Grzesiek, S. and Bax, A. (1992) J. Magn. Reson., 96, 432–440Google Scholar
  13. Grzesiek, S., Anglister, J. and Bax A. (1993) J. Magn. Reson., B101, 114–119.Google Scholar
  14. Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185–204.Google Scholar
  15. Hambling, S.G., McAlpine, A.S. and Sawyer, L. (1992) In Advanced Dairy Chemistry I (Ed., Fox, P.F.), Elsevier, Amsterdam, pp. 141–190.Google Scholar
  16. Huber, R., Schneider, M., Mayr, I., Muller, R., Deutzmann, R., Suter, F., Zuber, H., Falk, H. and Kayser, H. (1987) J. Mol. Biol., 198, 499–513.Google Scholar
  17. Jakob, E. and Puhan, Z. (1992) Int. Dairy J., 2, 157–178.Google Scholar
  18. Kabsch, W. and Sander, C. (1983) Biopolymers, 22, 2577–2637.Google Scholar
  19. Kay, L.E., Ikura, M., Tschudin, R. and Bax, A (1990) J. Magn. Reson., 89, 496–514.Google Scholar
  20. Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.Google Scholar
  21. Kay, L.E., Xu, G.Y. and Yamazaki, T. (1994) J. Magn. Reson., A109, 129–133.Google Scholar
  22. Kim, T.R., Goto, Y., Hirota, N., Kumata, K., Denton, H., Wu, S.-Y., Sawyer, L. and Batt, C.A. (1997) Protein Eng., 10, 1339–1345.Google Scholar
  23. Live, D.H., Davis, D.G., Agosta, W.C. and Cowburn, D. (1984) J. Am. Chem. Soc., 106, 1939–1941.Google Scholar
  24. Logan, T.M., Olejniczak, E.T., Xu, R.X. and Fesik, S.W. (1993) J. Biomol. NMR, 3, 225–231.Google Scholar
  25. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393–399.Google Scholar
  26. McCoy, M.A. and Mueller, L. (1992) J. Am. Chem. Soc., 114, 2108–2112.Google Scholar
  27. Mohebbi, A. and Shaka, A.J. (1991) J. Chem. Phys., 178, 374–377.Google Scholar
  28. Molinari, H., Ragona, L., Varani, L, Musco, G., Consonni, R., Zetta, L. and Monaco, H. (1996) FEBS Lett., 381, 237–243.Google Scholar
  29. Mori, S., Abeygunawardana, C., Johnson, M.O. and van Zijl, P.C.M. (1995) J. Magn. Reson., B108, 94–98.Google Scholar
  30. Muhandiram, D.R. and Kay, L.E. (1994) J. Magn. Reson., B103, 203–216.Google Scholar
  31. Newcomer, M., Jones, T.A., Agvist, J., Sundelin, J., Eriksson V., Rask, L. and Peterson, P.A. (1984) EMBO J., 3, 1451–1454.Google Scholar
  32. Papiz, M.Z., Sawyer, L., Eliopoulus, E.E., North, A.C.T., Findlay, J.B.C., Sivaprasadarao, R., Jones, T.A., Newcomer, M.E. and Kraulis, P.J. (1986) Nature, 324, 383–385.Google Scholar
  33. Perez, M.D. and Calvo, M. (1995) J. Dairy Sci., 78, 978–988.Google Scholar
  34. Piotto, M., Saudek, V. and Sklenář, V., (1992) J. Biomol. NMR, 2, 661–665.Google Scholar
  35. Ragona, L., Pustera, F., Zetta, L., Monaco, H.L., and Molinari, H. (1997) Folding Design, 2, 281–290.Google Scholar
  36. Schmidt, J.M. and Rüterjans, H. (1990) J. Am. Chem. Soc., 112, 1279–1280.Google Scholar
  37. Shaw, G.L., Müller, T., Mott, H.R., Oschkinat, H., Campbell, I.D. and Mitschang, L. (1997), J. Magn. Reson., 124, 479–483.Google Scholar
  38. Sklenář, V., Piotto, M., Leppik, R. and Saudek, V. (1993) J. Magn. Reson., A102, 241–245.Google Scholar
  39. States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.Google Scholar
  40. Tanford, C., Bunville, L.G. and Nozaki, Y. (1959) J. Am. Chem. Soc., 81, 4032–4036.Google Scholar
  41. Tegoni, M., Ramoni, R., Bignetti, E., Spinelli, S. and Cambillau, C. (1996) Nat. Struct. Biol., 3, 863–867.Google Scholar
  42. Vuister, G.W. and Bax, A. (1992) J. Magn. Reson., 98, 428–435.Google Scholar
  43. Wang, A.C., Lodi, P.J., Qin, J., Vuister, G.W., Gronenborg, A.M. and Clore, M. (1994) J. Magn. Reson., B105, 196–198.Google Scholar
  44. Wishart, D.S. and Sykes, B.D., (1994) J. Biomol. NMR, 4, 171–180.Google Scholar
  45. Yamazaki, T., Forman-Kay, J.D. and Kay, L.E. (1993) J. Am. Chem. Soc., 115, 11054–11055.Google Scholar
  46. Zhu, G. and Bax, A. (1990) J. Magn. Reson., 90, 405–410.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Stanislava Uhrínová
    • 1
  • Dušan Uhrín
    • 1
  • Helen Denton
    • 2
  • Mark Smith
    • 3
  • Lindsay Sawyer
    • 2
  • Paul N. Barlow
    • 1
  1. 1.The Edinburgh Centre for Protein Technology, Department of ChemistryUniversity of EdinburghEdinburghU.K
  2. 2.Structural Biochemistry GroupEdinburghU.K
  3. 3.New Zealand Dairy Research InstitutePamerston NorthNew Zealand

Personalised recommendations