Advertisement

Journal of Biomolecular NMR

, Volume 11, Issue 3, pp 307–318 | Cite as

Subunit-specific backbone NMR assignments of a 64 kDa trp repressor/DNA complex: A role for N-terminal residues in tandem binding

  • Xi Shan
  • Kevin H. Gardner
  • D.R. Muhandiram
  • Lewis E. Kay
  • Cheryl H. Arrowsmith
Article

Abstract

Deuterium decoupled, triple resonance NMR spectroscopy was used to analyze complexes of 2H,15N,13C labelled intact and (des2–7) trp repressor (Δ2–7 trpR) from E. coli bound in tandem to an idealized 22 basepair trp operator DNA fragment and the corepressor 5-methyltryptophan. The DNA sequence used here binds two trpR dimers in tandem resulting in chemically nonequivalent environments for the two subunits of each dimer. Sequence- and subunit-specific NMR resonance assignments were made for backbone 1HN, 15N, 13Cα positions in both forms of the protein and for13 Cβ in the intact repressor. The differences in backbone chemical shifts between the two subunits within each dimer of Δ2–7 trpR reflect dimer-dimer contacts involving the helix-turn-helix domains and N-terminal residues consistent with a previously determined crystal structure [Lawson and Carey (1993) Nature, 366, 178–182]. Comparison of the backbone chemical shifts of DNA-bound Δ2–7 trpR with those of DNA-bound intact trpR reveals significant changes for those residues involved in N-terminal-mediated interactions observed in the crystal structure. In addition, our solution NMR data contain three sets of resonances for residues 2–12 in intact trpR suggesting that the N-terminus has multiple conformations in the tandem complex. Analysis of Cα chemical shifts using a chemical shift index (CSI) modified for deuterium isotope effects has allowed a comparison of the secondary structure of intact and Δ2–7 tprR. Overall these data demonstrate that NMR backbone chemical shift data can be readily used to study specific structural details of large protein complexes.

deuterium labelling protein–DNA interactions protein–protein interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carey, J. (1988) Proc. Natl. Acad. Sci. USA, 85, 975.Google Scholar
  2. Carey, J. (1989) J. Biol. Chem., 264, 1941–1945.Google Scholar
  3. Czernik, P. J., Shin, D. S. and Hurlburt, B. K. (1994) J. Biol. Chem., 269, 27869–27875.Google Scholar
  4. Gardner, K. H., Rosen, M. K. and Kay, L. E. (1997) Biochemistry, 36, 1389–1401.Google Scholar
  5. Garrett, D. S., Seok, Y.-J., Liao, D.-I., Peterkofsky, A., Gronenborn, A. M. and Clore, G. M. (1997) Biochemistry, 36, 2517–2530.Google Scholar
  6. Hansen, P. E. (1988) Prog. NMR Spectrosc., 20, 207–255.Google Scholar
  7. Joachimiak, A., Kelley, R. L., Gunsalus, R. P., Yanofsky, C. and Sigler, P. B. (1983) Proc. Natl. Acad. Sci. USA, 80, 668–672.Google Scholar
  8. Klig, L. S., Carey, J. and Yanofsky, C. (1988) J. Mol. Biol., 202, 769–777.Google Scholar
  9. Kumamoto, A. A., Miller, W. G. and Gunsalus, R. P. (1987) Gene Dev., 1, 556–564.Google Scholar
  10. Lawson, C. L. and Carey, J. (1993) Nature, 366, 178–182.Google Scholar
  11. Liu, Y.-C. and Matthews, K. S. (1993) J. Biol. Chem., 268, 23239–23249.Google Scholar
  12. Otwinowski, Z., Schevitz, R. W., Zhang, R.-G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., Luisi, B. F. and Sigler, P. B. (1988) Nature, 335, 321–329.Google Scholar
  13. Schevitz, R., Otwinowski, Z., Joachimiak, A., Lawson, C. L. and Sigler, P. B. (1985) Nature, 317, 782–786.Google Scholar
  14. Shan, X., Gardner, K. H., Muhandiram, D. R., Rao, N. S., Arrowsmith, C. H. and Kay, L. E. (1996) J. Am. Chem. Soc., 118, 6570–6579.Google Scholar
  15. Venters, R. A., Farmer II, B. T., Fierke, C. A. and Spicer, L. D. (1996) J. Mol. Biol., 264, 1101–1116.Google Scholar
  16. Wishart, D. S. and Sykes, B. D. (1994) J. Biomol. NMR, 4, 171–180.Google Scholar
  17. Yamazaki, T., Lee, W., Revington, M., Mattiello, D. L., Dahlquist, F. W., Arrowsmith, C. H. and Kay, L. E. (1994a) J. Am. Chem. Soc., 116, 6464–6465.Google Scholar
  18. Yamazaki, T., Lee, W., Arrowsmith, C. H., Muhandiram, D. R. and Kay, L. E. (1994b) J. Am. Chem. Soc., 116, 11655–11666.Google Scholar
  19. Yang, J., Gunasekera, A., Lavoie, T. A., Jin, L. and Lewis, D. E. A. (1996) J. Mol. Biol., 258, 37–52.Google Scholar
  20. Zhao, D., Arrowsmith, C. H., Jia, X. and Jardetzky, O. (1993) J. Mol. Biol., 229, 735–746.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Xi Shan
    • 1
  • Kevin H. Gardner
    • 2
  • D.R. Muhandiram
    • 2
  • Lewis E. Kay
    • 2
  • Cheryl H. Arrowsmith
    • 1
  1. 1.Ontario Cancer Institute and Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  2. 2.Protein Engineering Centers of Excellence and Departments of Medical Genetics, Biochemistry and ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations