Biodegradation

, Volume 8, Issue 3, pp 159–165

Degradation of catechin by Bradyrhizobium japonicum

  • Waheeta Hopper
  • A. Mahadevan
Article

Abstract

Rhizobia utilize phenolic substances as sole carbonsource. Bradyrhizobium japonicum utilizescatechin, a unit of condensed tannin as carbonsource. To establish the degradative pathway ofcatechin, the products of catechin degradation wereisolated by paper chromatography and TLC andidentified by HPLC, UV, IR and NMR spectra. B.japonicum cleaves catechin through catechinoxygenase. Phloroglucinolcarboxylic acid andprotocatechuic acid were identified as the initialproducts of degradation. Phloroglucinolcarboxylicacid is further decarboxylated to phloroglucinolwhich is dehydroxylated to resorcinol. Resorcinolis hydroxylated to hydroxyquinol. Protocatechuicacid and hydroxyquinol undergo intradiol cleavagethrough protocatechuate 3,4-dioxygenase andhydroxyquinol 1,2-dioxygenase to formβ-carboxy cis, cis-muconic acidand maleylacetate respectively. The enzymes ofcatechin degradative pathway are inducible. Estimation of all the enzymes involved in thecatabolism of catechin reveals the existence of acatechin degradative pathway in B. japonicum.

Bradyrhizobium japonicum condensed tannins catechin degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbour WM, Hattermann DR & Stacey G (1991) Chemotaxis of Bradyrhizobium japonicumto soybean exudates. Appl. Environ. Microbiol. 57: 2635–2639Google Scholar
  2. Blackwood AC, Hang YS, Robern H & Mathur DK(1970)Reductive pathway for the degradation of phloroglucinol by a Pseudomonas. Bacteriol. Proc. 70: 124Google Scholar
  3. Boominathan K & Mahadevan A (1987) Plasmid encoded dissimilation of condensed tannin in Pseudomonas solanacearum. FEMS Microbiol. Lett. 40: 147–150Google Scholar
  4. Caetano-Anolles G, Crist-Estes DK & Bauer WD (1988) Chemotaxis of Rhizobium melilotito the plant flavone luteolin requires functional nodulation genes. J. Bacteriol. 170: 3164–3169Google Scholar
  5. Cartroux G, Fournier JC & Riviere J (1969) Mise en evidence rapide de l'utilization des acides-phenols par des souches bacteriennes isolees du sol. Ann. Inst. Paster. 166: 90–102Google Scholar
  6. Chandra T, Madhavakrishna W & Nayudamma Y (1969) Astringency in fruits. I-Microbial degradation of catechin. Can. J. Microbiol. 15: 303–306Google Scholar
  7. Chapman PJ & Ribbons DW (1976) Metabolism of resorcinylic compounds by bacteria: Alternative pathways for resorcinol catabolism in Pseudomonas putida. J. Bacteriol. 125: 985–998Google Scholar
  8. Dharmatilake AJ & Bauer WD (1992) Chemotaxis of Rhizobium melilotitowards nodulation gene inducing compounds from alfalfa roots. Appl. Environ. Microbiol. 58: 1153–1158Google Scholar
  9. Gajendran N & Mahadevan A (1988) Utilization of catechin by Rhizobiumsp. Plant Soil 108: 263–266Google Scholar
  10. Gayon PR (1972) Plant Phenolics. Oliver and Boyd, EdinburgGoogle Scholar
  11. Groseclose EE & Ribbons DW (1981) Metabolism of resorcinylic compounds by bacteria. New pathway for resorcinol catabolism in Azotobacter vinelandii. J. Bacteriol. 146: 460–466Google Scholar
  12. Hopper W & Mahadevan A (1991) Utilization of catechin and its metabolites by Bradyrhizobium japonicum. Appl. Microbiol. Biotechnol. 35: 411–415Google Scholar
  13. Hussien YA, Twefik MS & Hamdi YA (1974) Degradation of certain aromatic compounds by rhizobia. Soil Biol. Biochem. 6: 377–381Google Scholar
  14. Kape R, Parniske M & Werner D (1991) Chemotaxis and nodgene activity of Bradyrhizobium japonicumin response to hydroxycinnamic acids and isoflavonoids. Appl. Environ. Microbiol. 57: 316–319Google Scholar
  15. Larway P & Evans WC (1965) Metabolism of quinol and resorcinol by soil pseudomonads. Biochem. J. 95: 52Google Scholar
  16. Long SR (1989) Rhizobium-Legume nodulation: Life together in the underground. Cell 56: 203–214Google Scholar
  17. Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193: 265–275Google Scholar
  18. Mahadevan A & Sivaswamy SN (1985) Tannins and microorganisms. In: Mukerje KG, Pathak NC & Singh VP (Eds) Frontiers in Applied Microbiology Vol.I (pp 327–347) Print House. IndiaGoogle Scholar
  19. Muthukumar G, Arunakumari A & Mahadevan A (1982) Degradation of aromatic compounds by Rhizobiumspp. Plant Soil 69: 163–169Google Scholar
  20. Parke D & Ornston LN (1984) Nutritional diversity of rhizobiaceae revealed by auxanography. J. Gen. Microbiol. 130: 1743–1750Google Scholar
  21. Parke D, Rivelli M & Ornston LN (1985) Chemotaxis to aromatic and hydroaromatic acids: Comparison of Bradyrhizobium japonicumand Rhizobium trifolii. J. Bacteriol. 163: 417–422Google Scholar
  22. Raju SG, Khan NV & Vaidyanathan CS (1983) Separation of protocatechuate and homoprotocatechuate by paper chromatography and estimation of protocatechuate by colorimetry using a new FeCl3 reagent. J. Indian Inst. Sci. 64: 1–9Google Scholar
  23. Rao JR, Sharma ND, Hamilton JTG, Boyd DR & Cooper JE (1991) Biotransformation of the pentahydroxy flavone quercetin by Rhizobium lotiand Bradyrhizobiumstrains (Lotus). Appl. Environ. Microbiol. 57: 1563–1565Google Scholar
  24. Rao JR, & Cooper JE (1994) Rhizobia catabolize nodgene-inducing flavonoids via C-ring fission mechanisms. J. Bacteriol. 176: 5409–5413Google Scholar
  25. Waheeta A & Mahadevan A (1994) Degradation of aromatic substances by rhizobia. In: Mukerji, KG & Singh, VP (Eds) Frontiers in Applied Microbiology Vol. 7, (pp 37–56) Rastogi & Co., Meerut, India.Google Scholar
  26. Waheeta A, William F & Mahadevan A (1984) Degradation of catechin by Rhizobium japonicum. Abs. no. 144, 25th annualmeeting, Association of Microbiologists of India, Dec. 7-9, Pantnagar, India. p. 60Google Scholar
  27. Walker RL & Taylor BG (1983) Metabolism of phloroglucinol by Fusarium solan i. Arch. Microbiol. 134: 123–126Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Waheeta Hopper
    • 1
  • A. Mahadevan
    • 1
  1. 1.Centre for Advanced Studies in BotanyUniversity of MadrasMadrasIndia

Personalised recommendations