Minds and Machines

, Volume 7, Issue 3, pp 321–344

Two Dogmas of Computationalism

  • Oron Shagrir
Article

Abstract

This paper challenges two orthodox theses: (a) that computational processes must be algorithmic; and (b) that all computed functions must be Turing-computable. Section 2 advances the claim that the works in computability theory, including Turing's analysis of the effective computable functions, do not substantiate the two theses. It is then shown (Section 3) that we can describe a system that computes a number-theoretic function which is not Turing-computable. The argument against the first thesis proceeds in two stages. It is first shown (Section 4) that whether a process is algorithmic depends on the way we describe the process. It is then argued (Section 5) that systems compute even if their processes are not described as algorithmic. The paper concludes with a suggestion for a semantic approach to computation.

algorithm computability recursive function Turing-machine step-satisfaction analog and digital attractor neural nets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit, D. (1989), Modeling Brain Function, Cambridge: Cambridge University Press.MATHGoogle Scholar
  2. Block, N. and Fodor, J.A. (1972), ‘Cognitivism and the Analog/Digital Distinction’, unpublished manuscript.Google Scholar
  3. Church, A. (1936a), ‘An Unsolvable Problem of Elementary Number Theory’, Am. J. Math., 58 pp. 345–363. Reprinted in Davis (1965), pp. 88–107.MathSciNetGoogle Scholar
  4. Church, A. (1936b), ‘A Note on the Entscheidungsproblem’, Journal of Symbolic Logic, 1, pp. 40–41. Reprinted in Davis (1965), pp. 108–115.Google Scholar
  5. Churchland, P.S. and Sejnowski, T. (1992), The Computational Brain, Cambridge, MA: The MIT Press.Google Scholar
  6. Cleland, C. (1993), ‘Is the Church–Turing Thesis True?’, Minds and Machines, 3, 283–312.CrossRefGoogle Scholar
  7. Cummins, R. (1989), Meaning and Mental Represenation, Cambridge, MA: The MIT Press.Google Scholar
  8. Cummins R. and Schwarz G. (1991), ‘Connectionism, Computation, and Cognition’, in Horgan, T. and Tienson, J. (eds.), Connectionism and the Philosophy of Mind, Dordrecht: Kluwer, pp. 60–73.Google Scholar
  9. Davis, M. (ed.) (1965), The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, New-York: Raven.Google Scholar
  10. Demopoulos, W. (1987), ‘On Some Fundamental Distinctions of Computationalism’, Synthese, 70, pp. 79–96.CrossRefGoogle Scholar
  11. Dietrich, E. (1990), ‘Computationalism’, Social Epistemology, 4, pp. 135–154.CrossRefGoogle Scholar
  12. Earman, J. (1986), A Primer for Determinism, Holland: D. Reidel.Google Scholar
  13. Fetzer, J.H. (1994), ‘Mental Algorithms: Are Minds Computational Systems?’, Pragmatics and Cognition, 2, pp. 1–29.MathSciNetGoogle Scholar
  14. Gandy, R.O. (1980), ‘Church's Thesis and Principles of Mechanisms’, in Barwise J., Keisler J.J. and Kunen K. (eds.), The Kleene Symposium, Amsterdam: North-Holland, pp. 123–145.Google Scholar
  15. Gandy R.O. (1988), ‘The Confluence of Ideas in 1936’, in Herken, R. (1988), pp. 55–11l.Google Scholar
  16. Gödel, K. (1931), ‘Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme I’, J. Monast. Math. Ph., 38, pp. 173–198. Translated and reprinted in Davis (1965), pp. 4–38.CrossRefGoogle Scholar
  17. Gödel, K. (1946), ‘Remarks before the Princeton Bicentennial Conference on Problems in Mathematics’, Reprinted in Davis (1965), pp. 84–88.Google Scholar
  18. Goel, V. (1991), ‘Notationality and the Information-Processing Mind’, Minds and Machines, 1, pp. 129–165.CrossRefGoogle Scholar
  19. Goodman, N. (1968), Languages of Art, Indianapolis: Bobbs-Merrill.Google Scholar
  20. Grzegorczyk, A. (1955), ‘Computable Functionals’, Fund. Math., 42, pp. 168–202.MATHMathSciNetGoogle Scholar
  21. Grzegorczyk, A. (1957), ‘On the Definitions of Computable Real Continuous Functions’, Fund. Math., 44, pp. 61–71.MATHMathSciNetGoogle Scholar
  22. Haugeland, J. (1981), ‘Analog and Analog’, Philosophical Topics, 12, pp. 213–225.Google Scholar
  23. Herken, R. (ed.) (1988), The Universal Turing-Machine, A Half-Century Survey, Oxford: Oxford University Press.MATHGoogle Scholar
  24. Hilbert, D. and Ackermann, W. (1928), Grundzuge der Theoretischen Logic, Berlin.Google Scholar
  25. Hopfield, J.J. (1982), ‘Neural Networks and Physical Systems with Emergent Collective Computational Abilities’, Proceedings of the National Academy of Science, USA, 79, pp. 2554–2556.MathSciNetCrossRefGoogle Scholar
  26. Kleene, S.C. (1936a), ‘General Recursive Functions of Natural Numbers’, Math. Annal., 112, pp. 727–742. Reprinted in Davis (1965), pp. 236–253.MathSciNetCrossRefGoogle Scholar
  27. Kleene, S.C. (1936b), ‘⋋-definability and Recursiveness’, Duke Math. J., 2, pp. 340–353.MATHMathSciNetCrossRefGoogle Scholar
  28. Kleene, S.C. (1988), ‘Turing's Analysis of Computability, and Major Applications of It’, in Herken (1988), pp. 17–54.Google Scholar
  29. Lewis, D. (1971), ‘Analog and Digital’, Noûs, 5, pp. 321–327.CrossRefGoogle Scholar
  30. Morris, P., (1991), ‘On the Density of Solutions in Equilibrium Points for the N-Queens Problem’, Technical Note TR-M 91–2.Google Scholar
  31. Penrose, R.; (1989), The Emperor's New Mind, Oxford: Oxford University Press.Google Scholar
  32. Penrose, R. (1994), Shadows of the Mind, Oxford: Oxford University Press.Google Scholar
  33. Pitowsky, I. (1990), ‘The Physical Church Thesis and Physical Computational Complexity’, lyuum, A Jerusalem Philosophical Quarterly, 39, pp. 81–99.Google Scholar
  34. Post, E.L. (1936), ‘Finite Combinatory Processes – Formulation I’, Journal of Symbolic Logic, 1, pp. 103–105. Reprinted in Davis (1965), pp. 288–291.Google Scholar
  35. Pour-El, M.B. (1974), ‘Abstract Computability and its Relation to the General Purpose Analog Computer’, Trans. Amer. Math. Soc., 199, pp, 1–29.MATHMathSciNetCrossRefGoogle Scholar
  36. Pour-El, M.B. and Caldwell, J. (1975), ‘On a Simple Definitions of Computable Functions of a Real Variable with Applications to Functions of a Complex Variable’, Z. Math. Logik. Grundlagen Math., 21, pp. 1–19.MATHMathSciNetGoogle Scholar
  37. Pour-El, M.B. and Richards, I. (1981), ‘The Wave Equation with Computable Initial Data such that its Unique Solution is not Computable’. Adv. in Math., 39, pp. 215–239.MATHMathSciNetCrossRefGoogle Scholar
  38. Pylyshyn, Z.W. (1984), Computation and Cognition, Cambridge, MA: The MIT Press.Google Scholar
  39. Shagrir, O., (1992), ‘ANeuralNet with Self InhibitingUnits for the N-Queens Problem’, International Journal of Neural Systems, 3, 349–352.CrossRefGoogle Scholar
  40. Shapiro, S. (1983), ‘Remarks on the Development of Computability’, History and Philosophy of Logic, 4, pp. 203–220.MATHMathSciNetGoogle Scholar
  41. Sieg, W. (1994), ‘Mechanical Procedures and Mathematical Experience’, in George, A. (ed.), Mathematics and Mind, Oxford: Oxford University Press, pp. 71–114.Google Scholar
  42. Sosic, R. and Gu, J., (1990), ‘A Polynomial Time Algorithm for the N-Queens Problem’, SIGART Bulletin, 1, pp. 7–11.Google Scholar
  43. Sosic, R. and Gu, J., (1991), ‘3,000,000 Queens in Less Than One Minute’, SIGART Bulletin, 2, pp. 22–24.Google Scholar
  44. Turing, A.M. (1936–7), ‘On Computable Numbers, with an Application to theEntscheidungsproblem’, P. Lond. Math. Soc. (2), 42 (1936), pp. 230–265. plus a correction, ibid., 43 (1937), pp. 544–546. Reprinted in Davis (1965), pp. 115–154.MATHGoogle Scholar
  45. Turing, A. (1950), ‘Computing, Machinery, and Intelligence’, Mind, 59, 433–460MathSciNetGoogle Scholar
  46. van Heijenoort, J., (1967), From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Cambridge, MA: Harvard University Press.MATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Oron Shagrir
    • 1
  1. 1.Sidney M. Edelstein Center for History and Philosophy of ScienceThe Hebrew UniversityJerusalemIsrael

Personalised recommendations