Advertisement

Biodegradation

, Volume 9, Issue 1, pp 23–37 | Cite as

The chemical control of biofouling in industrial water systems

  • T.E. Cloete
  • L. Jacobs
  • V.S. Brözel
Article

Abstract

Oxidising and non-oxidising biocides are commonly used in an attempt to control biofouling in industrial water systems. Many of these programmes, however, fail due to the incorrect selection and application of these chemical compounds. Knowledge of the organisms to be eliminated and system hydraulics are important operational parameters in ensuring the successful application of chemical control programmes. A further complicating factor is the build up of bacterial resistance to many of these compounds. One way of limiting resistance is the alteration of oxidising and non-oxidising biocides at the correct miminum inhibitory concentration and using these in combination with surface active compounds to dislodge any biofilm. A variety of surface monitoring techniques are in use in order to monitor the success of biofouling control programmes. Unfortunately none of these techniques are ideal and results have to be considered very carefully.

bacterial resistance biocides biocorrosion biofouling monitoring dispersants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair FW, Geftig SG & Gelzer J (1971) Resistance of Pseudomonas to quaternary ammonium compounds. I. Growth in benzalkonium chloride solutions. Appl. Microbiol. 21: 1058- 1063Google Scholar
  2. Albrich JM, McCarthy CA & Hurst JK (1981) Biological reactivity of hypochlorous acid. Implications for microbiocidal mechanisms of leukocyte myeloperoxidase. Proc. Natl. Acad. Sci. U. S. A. 78: 210- 214Google Scholar
  3. Allsop D & Seal KJ (1986) Introduction to Biodeterioration. Edward Arnold, LondonGoogle Scholar
  4. Anwar H, Shand GH, Ward KH, Brown MRV, Alpar KE & Gowar J (1985) Antibody response to acute Pseudomonas aeruginosa infection in a burn wound. FEMS Microbiol. Lett. 29: 225- 230Google Scholar
  5. Atlas RM & Bartha R (1987) Evolution and structure of microbial communities. In: Microbial Ecology: Fundamentals and Applications. 2nd ed. The Benjamin/Cummings Publishing Company, Menlo Park, CaliforniaGoogle Scholar
  6. Attwood D & Florence AT (1983) Surfactant systems: their chemistry, pharmacy and biology. Chapman and Hall Ltd, LondonGoogle Scholar
  7. Barnes CP & Eagon RG (1986) The mechanism of action of hexahydro-1,3,5-triethyl-s-triazine. J. Ind. Microbiol. 1: 105- 112Google Scholar
  8. Broxton P, Woodcock PM, Heatley F & Gilbert P (1984) Interaction of some plyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J. Appl. Bacteriol. 57: 115- 124Google Scholar
  9. Brözel VS (1992) Bacterial resistance to certain nonoxidising water treatment bactericides. PhD Thesis, University of Pretoria, Pretoria, South AfricaGoogle Scholar
  10. Brözel VS & Cloete TE (1991a) Fingerprinting of commercially available water treatment bactericides in South Africa. Water SA 17: 57- 66Google Scholar
  11. ____ (1991b) Resistance of bacteria from cooling waters to bactericides. J. Ind. Microbiol. 8: 273- 276Google Scholar
  12. ____ (992a) Evaluation of nutrient agars for the enumeration of viable aerobic heterotrophs in cooling water. Water Res. 26: 1111- 1117Google Scholar
  13. ____ (1992b) The effect of bactericide treatment on planktonic bacterial communities in water cooling systems. Water SA 18: 87- 92Google Scholar
  14. ____ (1993a) Adaptation of Pseudomonas aeruginosa to 2,2′-methylenebis( 4-chlorophenol). J. Appl. Bacteriol. 74: 94- 99Google Scholar
  15. ____ (1993b) Bacterial resistance to conventional water treatment biocides. CAB Biodeterioration Abstracts 7: 387- 395Google Scholar
  16. Caldwell DE & Lawrence JR (1989) Microbial growth and behaviour within surface microenvironments. In: Recent Advances in Microbial Ecology: Proceedings of the 5th International Symposium on Microbial Ecology (pp 140- 145)Google Scholar
  17. Characklis WG (1990) Microbial biofouling control. In: Characklis WG & Marshall KC (Eds) Biofilms (pp 585- 633). John Wiley and Sons, New YorkGoogle Scholar
  18. Characklis WG, Trulear MG, Bryers JD & Zerver N (1982) Dynamics of biofilm processes. Methods. Water Res. 16: 1207- 1216Google Scholar
  19. Characklis WG & Cooksey KE (1983) Biofilms and microbial fouling. Adv. Appl Microbiol. 29: 93- 138Google Scholar
  20. Christensen BE & Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis WG & Marshall KC (Eds) Biofilms (pp 93- 130). John Wiley and Sons, New YorkGoogle Scholar
  21. Cloete TE, Brözel VS & Da Silva E (1993) Application of SterikonR bioindicators for the determination of bactericide concentrations. Water SA 19: 343- 345Google Scholar
  22. Cloete TE, Brözel VS & Pressly J (1989a) Bacterial population structure study of water cooling systems in South Africa. Water SA 15: 37- 42Google Scholar
  23. Cloete TE, Brözel VS & Von Holy A (1992) Practical aspects of biofouling control in industrial water system. Int. Biodeterioration and Biodegradation 29: 299- 341Google Scholar
  24. Cloete TE, Smith F & Steyn PL (1989b) The use of planktonic bacterial populations in open and closed recirculating water cooling systems for the evaluation of biocides. Int. Biodeterioration 25: 115- 122Google Scholar
  25. Collier PJ, Austin P & Gilbert P (1991) Isothiazolone biocides: enzymeinhibiting prodrugs. Int. J. Pharm. 74: 195- 206Google Scholar
  26. Collier PJ, Ramsey A, Austin P & Gilbert P (1990a) Growth inhibitory and biocidal activity of some isothiazolone biocides. J. Appl. Bacteriol. 69: 569- 577Google Scholar
  27. Collier PJ, Ramsey A, Waigh RD, Douglas KT, Austin P & Gilbert P (1990b) Chemical reactivity of some isothiazolone biocides. J. Appl. Bacteriol. 69: 578- 584Google Scholar
  28. Colturi TF & Kozelski KJ (1984) Corrosion and biofouling control in a cooling tower system. Material Performance August: 43- 47Google Scholar
  29. Costerton JW & Lappin-Scott HM (1989) Behaviour of bacteria in biofilms. ASM NEWS 55: 650- 654Google Scholar
  30. Costerton JW & Lashen ES (1983) The inherent biocide resistance of corrosion-causing biofilm bacteria. Corrosion '83, National Association of Corrosion Engineers, Anaheim, April 18- 22, Paper number 246Google Scholar
  31. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasyupta M & Marrie TJ (1987) Bacterial biofilms in nature and disease. Appl. Rev. Microbial. 41: 435- 464Google Scholar
  32. Dawood Z & Brözel VS (1997) Corrosion-enhancing potential of Shewanella putrefaciens isolated from industrial cooling waters. J. Appl. Microbiol. (In press)Google Scholar
  33. De Bruyn EE (1992) Microbial ecology of sulphide producing bacteria in water cooling systems. MSc thesis, University of Pretoria, Pretoria, South AfricaGoogle Scholar
  34. Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends in Biotechnology 10: 208- 216Google Scholar
  35. Fitzgerald KA, Davies A & Russell AD (1992) Bacterial uptake of 14C-chlorhexidine diacetate and 14C-benzyl alcohol and the influence of phenoxyethanol and azolectin: studies with Gram-negative bacteria. Microbios 70: 77- 91Google Scholar
  36. Ford T & Mitchell R (1990) The ecology of microbial corrosion. Adv. Microbiol. Ecol. 11: 231- 262Google Scholar
  37. Franklin TJ & Snow GA (1981) Biochemistry of Antimicrobial Action. 3rd ed. Chapman & Hall, LondonGoogle Scholar
  38. Freedman L (1979) Using chemicals for biological control in cooling water systems, some practical considerations. Industrial Water Engineering 16(5): 14- 17Google Scholar
  39. Gaylarde CC (1990) Advances in detection of microbiologically induced corrosion. Int. Biodeterioration 26: 11- 32Google Scholar
  40. Gilbert P & Brown MRW (1978) Influence of growth rate and nutrient limitation on the gross cellular composition of Pseudomonas aeruginosa and its resistance to 3-and 4-chlorolphenol. J. Bacteriol. 133: 1066- 1072Google Scholar
  41. Gilbert P & Wright N (1987) Non-plasmidic resistance towards preservatives of pharmaceutical products. In: Board RG, Allwood MC & Banks JG (Eds) Preservatives in the Food, Pharmaceutical and Environmental Industries (pp 255- 279). Blackwell Scientific Publications, OxfordGoogle Scholar
  42. Hall BG (1990) Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 126: 5- 16Google Scholar
  43. Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39: 195- 217Google Scholar
  44. Hart RA, Hughes DH, Templet HP & Whitaker JM (1990) Iron deposition and the effect of water treatment in mitigating suspected MIC failure of 304 stainless steel. In: Doulin N, Mittleman M & Danko J (Eds) Microbially Influenced Corrosion and Biodeterioration (pp 6- 69). Knoxville, Tennessee, October 7- 12Google Scholar
  45. Heinzel M (1988) The phenomena of resistance of disinfectants and preservatives. In: Payne KR (Ed) Industrial Biocides (pp 52- 67). John Wiley and Sons, ChichesterGoogle Scholar
  46. Hill EC, Hill GC & Robbins DA (1989) An informative practical strategy for preventing spoilage and improving preservation using a simple assay for biocides and preservatives. Int. Biodeterioration 25: 245- 252Google Scholar
  47. Hoppe HG (1984) Attachment of bacteria: advantage or disadvantage for survival in the aquatic environment. In: Marshall KC (Ed) Microbial Adhesion and Aggregation (pp 283- 301). SpringerVerlag, BerlinGoogle Scholar
  48. Iverson WP (1987) Microbial corrosion ofmetals. Adv. Appl. Microbiol. 32: 1- 36Google Scholar
  49. Jacobs L (1996) Anionic and nonionic surfactants, used for controlling the attachment of Pseudomonas aeruginosa to glass and 3CR12 metal surfaces. MSc thesis, University of Pretoria, Pretoria, South AfricaGoogle Scholar
  50. Jones MV, Herd TM & Christie HJ (1989) Resistance of Pseudomonas aeruginosa to amphoteric and quaternary ammonium biocides. Microbios. 58: 49- 61Google Scholar
  51. Karsa DR (1992) Industrial application of surfactants. Redwood Press Ltd, EnglandGoogle Scholar
  52. Lawrence JR, Delaquis DJ, Korber DR & Caldwell DE (1989) Behaviour of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments. Microb. Ecol. 14: 1- 14Google Scholar
  53. Lee W, Lewandowski Z, Nielsen PH & Hamilton WA (1995) Role of sulphate-reducing bacteria in corrosion of mild steel - a review. Biofouling 8: 165- 194Google Scholar
  54. Mansfeld F & Little B (1990) A critical review of the application of electrochemical techniques to the study of MIC. In: Proceedings of the International Water Conference, Pittsburg, U. S. A.Google Scholar
  55. McCoy WF, Bryers JD, Robbins J & Costerton JW (1981) Observations of fouling biofilm formation. Can. J. Microbiol. 27: 910- 917Google Scholar
  56. Nikaido H & Vaara M (1987) Outer membrane. In: Neidhardt FC, Ingraham JL, Low K, Magasanik B, Schaechter M & Umbarger HE (Eds) Cellular and Molecular Biology (pp 7- 22). Vol. 1. American Society for Microbiology, Washington D. C.Google Scholar
  57. Parr JA (1990) Industrial biocide formulation - the way forward. Int. Biodeterioration 26: 237- 244Google Scholar
  58. Payne KR (1988) Industrial Biocides. John Wiley and Sons, ChichesterGoogle Scholar
  59. Pedersen K (1982) Method for studying microbial biofilms in flowing-water systems. Appl. Microbial. 43: 6- 13Google Scholar
  60. Pietersen B, Brözel VS & Cloete TE (1995) The reaction of bacterial cultures to oxidising water treatment bactericides. Water SA 21: 173- 176Google Scholar
  61. Poulton WIJ (1993) Monitoring and control of biofouling in power utility open recirculating cooling water systems. MSc thesis, University of Pretoria, Pretoria, South AfricaGoogle Scholar
  62. Poulton WIJ & Nixon M (1990) Microbial corrosion at Eskom. Presented at Microbial Corrosion Problems in the South African Industry, Indaba Conference Centre, Johannesburg, 18 SeptGoogle Scholar
  63. Richards RME & Cavill RH (1980) Electron microscope study of the effect of benzalkonium, chlorhexidine and polymyxin on Pseudomonas cepacia. Microbios. 29: 23- 31Google Scholar
  64. Rossmoore HW & Sondossi M (1988) Applications and mode of action of formaldehyde condensate biocides. Adv. Appl. Microbiol. 33: 223- 275Google Scholar
  65. Russell AD (1990) Mechanisms of bacterial resistance to biocides. Int. Biodeterioration 26: 101- 110Google Scholar
  66. Russel AD & Chopr I (1990) Understanding Antibacterial Action and Resistance. Ellis Horwood, New YorkGoogle Scholar
  67. Russel AD, Furr RJ & Maillard JY (1997) Microbial susceptibility and resistance to biocides. ASM News. 63: 481- 487Google Scholar
  68. Sakagami Y, Yokohama H, Nishimura H, Ose Y & Tashima T (1989a) Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 55: 2036- 2040Google Scholar
  69. ____ (1989b) The mechanism of resistance of Pseudomonas aeruginosa to chlorhexidine digluconate. J. Antibact. Antifung. Agents. 17: 153- 160Google Scholar
  70. Sasatsu M, Shibata Y, Noguchi N & Kono M (1992) High-level resistance to ethidium bromide and antiseptics in Staphylococcus aureus. FEMS Microbiol. Lett. 93: 109- 114Google Scholar
  71. Savage DC & Fletcher M (1985) Bacterial adhesion. Plenum Press, New YorkGoogle Scholar
  72. Sondossi M, Rossmoore HW & Wireman JW (1986) The effect of fifteen biocides on formaldehyderesistant strains of Pseudomonas aeruginosa. J. Ind. Microbiol. 1: 87- 96Google Scholar
  73. Strauss SD & Puckarius DR (1984) Cooling water treatment for control of scaling, fouling, corrosion. Power, JuneGoogle Scholar
  74. Stryer L (1981) Biochemistry. W. H. Freeman and Company, San FranciscoGoogle Scholar
  75. Summers AO (1986) Organisation, expression and evolution of genes for mercury resistance. Ann. Rev. Microbiol. 40: 607- 643Google Scholar
  76. Tamachkiarowa A & Flemming HC (1996) Glass fiber sensor for biofouling monitoring. In: Proceedings of the 10th International Biodeterioration and Biodegradation Symposium, DECHEME Monographs Vol. 133, VCH Verlagsgesellschaft, HamburgGoogle Scholar
  77. Tatnall RE & Horacek GL (1990) New perspectives on testing for sulphate reducing bacteria. In: Dowling N, Mittleman M & Danko J (Eds) Microbially Influenced Corrosion and Biodeterioration. Knoxville, TennesseeGoogle Scholar
  78. Young-Bandala L & Boho MJ (1987) An innovativemethod formonitoring microbiological deposits in pulp and paper mills. TAPPI J. 70(1): 68- 71Google Scholar
  79. Wainwright M (1988) Structure and biology of bacteria relevant to the action of disinfectants. In: Payne KR (Ed) Industrial Biocides (pp 52- 67). John Wiley & Sons, ChichesterGoogle Scholar
  80. Wallhäuß er KH (1995) Praxis der Sterilisation, Desinfektion - Konservierung: Keimidentifizierung - Betriebshygiene (5th edn.). Georg Thieme Verlag, StuttgartGoogle Scholar
  81. Wolfaardt GM, Archibald REM & Cloete TE (1991) The use of DAPI in the quantification of sessile bacteria on submerged surfaces. Biofouling 4: 265- 274Google Scholar
  82. Woodcock PM (1988) Biguanides as industrial biocides. In: Payne KR (Ed) Industrial Biocides. John Wiley and Sons, ChichesterGoogle Scholar
  83. Wolfaardt GM, Lawrence JR, Headley JV, Robarts RD & Caldwell DE (1994) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants. Microb. Ecol. 27: 278- 291Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • T.E. Cloete
  • L. Jacobs
  • V.S. Brözel

There are no affiliations available

Personalised recommendations