Advertisement

Biodegradation

, Volume 8, Issue 2, pp 113–124 | Cite as

Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site

  • Suzana Trajanovska
  • Margaret L. Britz
  • Mrinal Bhave
Article

Abstract

Resistance to a range of heavy metal ions wasdetermined for lead-resistant and other bacteria whichhad been isolated from a battery-manufacturing sitecontaminated with high concentrations of lead. Several Gram-positive (belonging to the genera Arthrobacter and Corynebacterium) andGram-negative (Alcaligenes species) isolateswere resistant to lead, mercury, cadmium, cobalt,zinc and copper, although the levels of resistance tothe different metal ions were specific for eachisolate. Polymerase chain reaction, DNA-DNAhybridization and DNA sequencing were used to explorethe nature of genetic systems responsible for themetal resistance in eight of the isolates. SpecificDNA sequences could be amplified from the genomic DNAof all the isolates using primers for sections of themer (mercury resistance determinant on thetransposon Tn501) and pco (copperresistance determinant on the plasmid pRJ1004) geneticsystems. Positive hybridizations with mer andpco probes indicated that the amplified segmentswere highly homologous to these genes. Some of thePCR products were cloned and partially sequenced, andthe regions sequenced were highly homologous to theappropriate regions of the mer and pcodeterminants. These results demonstrate the widedistribution of mercury and copper resistance genes inboth Gram-positive and Gram-negative isolates obtainedfrom this lead-contaminated soil. In contrast, theczc (cobalt, zinc and cadmium resistance) andchr (chromate resistance) genes could not beamplified from DNAs of some isolates, indicating thelimited contribution, if any, of these genetic systemsto the metal ion resistance of these isolates.

lead-resistant bacteria metal-resistant Gram-positive bacteria PCR probing mer, pco, czc, chr genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barkay T & Olson BH (1986) Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress. Appl. Environ. Microbiol. 52: 403–406Google Scholar
  2. 2.
    Diels L & Mergeay M (1990) DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavymetals. Appl. Environ. Microbiol. 56: 1485–1491Google Scholar
  3. 3.
    Dressler C, Kues U, Nies D & Friedrich B (1991) Determinants encoding resistance to several heavy metals in newly isolated copper-resistant bacteria. Appl. Environ. Microbiol. 57: 3079–3085Google Scholar
  4. 4.
    Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P & Van Gijsegem F (1985) Alcaligenes eutrophusCH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162: 328–334Google Scholar
  5. 5.
    Nakamura K & Silver S (1994) Molecular analysis of mercury resistant Bacillusisolates from sediment of Minamata Bay, Japan. Appl. Environ. Microbiol. 60: 4596–4599Google Scholar
  6. 6.
    Osborn AM, Bruce KD, Strike P & Ritchie DA (1993) Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among merdeterminants from Gram-negative soil bacteria indistinguishable by DNADNA hybridization. Appl. Environ. Microbiol. 59: 4024–4030Google Scholar
  7. 7.
    Rochelle PA, Wetherbee MK & Olson BH (1991). Distribution of DNA sequences encoding narrow-and broad-spectrum mercury resistance. Appl. Environ. Microbiol. 57: 1581–1589.Google Scholar
  8. 8.
    Schmidt T & Schlegel HG (1994) Combined nickel-cobaltcadmium resistance encoded by the ncclocus of Alcaligenes xylosoxidans31A. J. Bacteriol. 176: 7045–7054Google Scholar
  9. 9.
    Brown NL, Rouch DA & Lee BTO (1992) Copper resistance determinants in bacteria. Plasmid 27: 41–51Google Scholar
  10. 10.
    Gadd GM (1992) Heavy metal pollutants: environments and biotechnological aspects. In: Lenderberg L. (Ed) Encyclopaedia of Microbiology. Academic Press Inc., CAGoogle Scholar
  11. 11.
    Bogdanova ES, Mindlin SZ, Kalyaeva ES & Nikiforov VG (1988) The diversity of mercury reductases among mercuryresistant bacteria. FEBS Lett. 234: 280–282Google Scholar
  12. 12.
    Khesin RB & Karasyova EV (1984) Mercury-resistant plasmids in bacteria from a mercury and antimony deposit area. Mol. Gen. Genet. 197: 280–285Google Scholar
  13. 13.
    Griffin HG, Foster TJ, Silver S & Misra TK (1987) Cloning and DNA sequence of the mercuric-and organomercurial-resistance determinants of plasmid pDU1358. Proc. Natl. Acad. Sci. USA. 84: 3112–3116Google Scholar
  14. 14.
    Hobman J, Kholodii G, Nikiforov V, Ritchie DA, Strike P & Yurieva O (1994) The sequence of the meroperon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Gene 146: 73–78Google Scholar
  15. 15.
    Jobling MG, Peters SE & Ritchie DA (1988) Restriction pattern and polypeptide homology among plasmid-borne mercury resistance determinants. Plasmid 20: 106–112Google Scholar
  16. 16.
    Laddaga RA, Chu L, Misra TK & Silver S (1987) Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureusplasmid pI258. Proc. Natl. Acad. Sci. USA. 84: 5106–5110Google Scholar
  17. 17.
    Misra TK (1992) Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 27: 4–16Google Scholar
  18. 18.
    Misra TK, Brown N, Fritzinger DC, Pridmore RD, Barnes WM, Haberstroh L & Silver S (1984) Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes. Proc. Natl. Acad. Sci. USA. 81: 5975–5979Google Scholar
  19. 19.
    Wang Y, Moore M, Levinson HS, Silver S, Walsh C & Mahler I (1989) Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillussp. with broad-spectrum mercury resistance. J. Bacteriol. 171: 83–92Google Scholar
  20. 20.
    Bender CL, Malvick DK, Conway KE, George S & Pratt P (1990) Characterization of pXV10A, a copper resistance plasmid in Xanthomonas campestrispv. vesicatoria. Appl. Environ. Microbiol. 56: 170–175Google Scholar
  21. 21.
    Cervantes C, Ohtake H, Chu L, Misra TK & Silver S (1990) Cloning, nucleotide sequence and expression of the chromate resistance determinant of Pseudomonas aeruginosaplasmid pUM505. J. Bacteriol. 172: 287–291Google Scholar
  22. 22.
    Chen C-M, Misra TK, Silver S & Rosen BP (1986) Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261: 15030–15038Google Scholar
  23. 23.
    Cooksey DA, Azad HR, Cha J-S & Lim C-K (1990) Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl. Environ. Microbiol. 56: 431–435Google Scholar
  24. 24.
    Liesegang H, Lemke K, Siddiqui RA & Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnrfrom pMOL28 of Alcaligenes eutrophusCH34.J. Bacteriol. 175: 767–778Google Scholar
  25. 25.
    Nies DH (1992) Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27: 17–28Google Scholar
  26. 26.
    Nies DH, Nies A, Chu L & Silver S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. USA. 86: 7351–7355Google Scholar
  27. 27.
    Nies A, Nies DH & Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J. Biol. Chem. 265: 5648–5653Google Scholar
  28. 28.
    Nucifora G, Chu L, Misra TK & Silver S (1989) Cadmium resistance from Staphylococcus aureusplasmid pI258 cadAgene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA. 86: 3544–3548Google Scholar
  29. 29.
    Silver S & Walderhaug M (1992) Gene regulation of plasmidand chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195–228Google Scholar
  30. 30.
    Stoppel R-D & Schlegel HG (1995) Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickelpercolated ecosystems. Appl. Environ. Microbiol. 61: 2276–2285Google Scholar
  31. 31.
    Williams JR, Morgan AG, Rouch DA, Brown NL & Lee BTO (1993) Copper-resistant enteric bacteria from United Kingdom and Australian piggeries. Appl. Environ. Microbiol. 59: 7027–7033Google Scholar
  32. 32.
    Barkay T, Fouts DL & Olson BH (1985) Preparation of a DNA gene probe for detection of mercury resistance genes in Gramnegative bacterial communities. Appl. Environ. Microbiol. 49: 686–692Google Scholar
  33. 33.
    Barkay T, Liebert S & Gillman M (1989) Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mergenes and Hg2+ resistance. Appl. Environ. Microbiol. 55: 1574–1577Google Scholar
  34. 34.
    Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P & Ritchie DA (1992) Amplification of DNA from native populations of soil bacteria using the polymerase chain reaction. Appl. Environ. Microbiol. 58: 3413–3416Google Scholar
  35. 35.
    Holben WE, Jansson JK, Chelm BK & Tiedje JM (1988) DNA probe method for specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54: 703–711Google Scholar
  36. 36.
    Manovski S, Roddick FA & Britz ML (1992) Isolation of lead-tolerant microbes from a contaminated site in Melbourne, Australia. In: Soil Decontamination Using Biological Processes, EFB Task Group on Soil Decontamination Using Biological Processes (pp 689–695). DECHEMA, FrankfurtGoogle Scholar
  37. 37.
    Reade E (1981) Microbial techniques. School of Microbiology, University of Melbourne, AustraliaGoogle Scholar
  38. 38.
    Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning: a laboratory manual. (Ed. II). Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  39. 39.
    Haynes JA & Britz ML (1990) Effects of growth conditions on electro-transformation frequencies of Corynebacterium glutamicum. J. Gen. Microbiol. 136: 255–263Google Scholar
  40. 40.
    Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J.Mol. Biol. 98: 503–517Google Scholar
  41. 41.
    Church GM & Gilbert W (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA. 81: 1991–1995Google Scholar
  42. 42.
    Brown NL, Barrett SR, Camakaris J, Lee BTO & Rouch DA (1995) Molecular genetics and transport analysis of the copperresistance determinant (pco) from Escherichia coliplasmid pRJ1004. Mol. Microbiol. 17: 1153–1166Google Scholar
  43. 43.
    Sanger F, Nicklen S & Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463–6467Google Scholar
  44. 44.
    Diels L, Dong Q, van der Lelie D, Baeyens W & Mergeay M (1995) The czcoperon of Alcaligenes eutrophusCH34: from resistance mechanism to the removal of heavy metals. J. Ind. Microbiol. 14: 142–153Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Suzana Trajanovska
    • 1
  • Margaret L. Britz
    • 2
  • Mrinal Bhave
    • 1
  1. 1.Department of Biological and Food SciencesAustralia
  2. 2.Centre for Bioprocessing and Food TechnologyVictoria University of TechnologyMCMCAustralia

Personalised recommendations