The use of histopathological indicators to evaluate contaminant-related stress in fish

  • Julia Schwaiger
  • Rüdiger Wanke
  • Stefan Adam
  • Michael Pawert
  • Wolfgang Honnen
  • Rita Triebskorn


As a component of a large research program toevaluate the effects of contaminants on fish healthin the field, histopathological studies have beenconducted to help establish causal relationshipsbetween contaminant exposure and various biologicalresponses. Brown trout (Salmo trutta f. fario)and loach (Barbatula barbatula) were exposedto water diverted from polluted streams undersemi-field conditions at various times during theyear. The histopathological studies revealedseasonal differences in the types and severity oforgan lesions between fish of the two streams. Bothtoxicant-induced alterations and organ lesionsresulting from natural stressors (physicochemicaland limnological water parameters) and secondarystress effects of pollution (diseases) could bedetected. In evaluating the general health ofexperimental and control fish, the use ofhistopathological studies are recommended for makingmore reliable assessments of biochemical responsesin fish exposed to a variety of environmentalstressors. Stereological analysis providesquantitative data on pathological lesions whichhelps to establish correlation with other biomarkersthereby increasing the probability of identifyingcause (stressor) and effect (biomarker) relationships.

biomarker environmental pollution fish disease histopathology morphometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, S.M., 1990. Status and use of biological indicators for evaluating the effects of stress on fish. Am. Fisheries Soc. Symp. 8: 1–8.Google Scholar
  2. Anderson D.P. 1990. Immunological indicators: effects of environmental stress on immune protection and disease outbreaks. Am. Fisheries Soc. Symp. 8: 38–50.Google Scholar
  3. Anderson, R.S. & M.G. Zeeman. 1995. Immunotoxicology in fish. In: G. Rand (ed), Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment. Taylor and Francis, Washington, DC, pp. 371–404.Google Scholar
  4. Best F. 1906. Über Karminfärbung des Glykogens und der Kerne. Z. wiss. Mikrosk. 23: 319–322.Google Scholar
  5. El-Matbouli, M., T. Fischer-Scherl & R.W. Hoffmann, 1992: Present knowledge on the life cycle, taxonomy, pathology, and therapy of some Myxosporeaspp. important for freshwater fish. Annual Rev. of Fish Diseases: 367–407.Google Scholar
  6. Fischer-Scherl, T., A. Veser, R.W. Hoffmann, C. Kühnhauser, R.D. Negele & Th. Ewringmann, 1991. Morphological effects of acute and chronic atrazine exposure in rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol. 20: 454–461.Google Scholar
  7. Geyer, H.J., C.E. Steinberg, I. Scheunert, R. Brüggemann, W. Schütz, A. Kettrup & K. Rozman, 1993. A review of the relationship between acute toxicity (LC50) of γ-hexachlorocyclohexane (γ-HCH, Lindane) and total lipid content of different fish species. Toxicol. 83: 169–179.Google Scholar
  8. Gill, T.S., J.C. Pant & H. Tewari, 1989. Cadmium nephropathy in a fresh water fish Puntius conchonius Hamilton. Ecotox. Environ. Safety 18: 165–172.Google Scholar
  9. Goering, P.L., C.L. Kish & B.R. Fisher, 1993. Stress protein synthesis induced by cadmium-cysteine in rat kidney. Toxicol. 85: 25–39.Google Scholar
  10. Goyer R.A., 1971. Lead and the kidney. Current Top. Path. 55: 147–176.Google Scholar
  11. Hinton, D.E. & D.J. Laurén, 1990. Integrative histopathological approaches to detecting effects of environmental stressors on fishes. Am. Fisheries Soc. Symp. 8: 51–66.Google Scholar
  12. Hinton, D.E., P.C. Baumann, G.R. Gardner, W.E. Hawkins, J.D. Hendricks, R.A. Murchelano & M.S. Okihiro, 1992. Histopathologic biomarkers. In: R.J. Hugget, R.A. Kimerle, P.M. Mehrle, Jr. & H.L. Bergman (eds), Biomarkers, Biochemical, Physiological and Histological Markers of Anthropogenic Stress. SETAC Publication, Lewis Publishers, pp. 155–209.Google Scholar
  13. Malins, D.C., B.B. McCain, J.T. Landahl, M.S. Myers, M.M. Krahn, D.E. Brown, S.-L. Chan & W.T. Roubal, 1988. Neoplastic and other diseases in fish in relation to toxic chemicals: an overview. Aquat. Toxicol. 11: 43–67.Google Scholar
  14. Maxie M.G., 1985. The urinary system. In: Jubb, K.V.F., P.C. Kennedy & N. Palmer (eds), Pathology of Domestic Animals. Vol. 2. Academic Press Inc., Orlando, Florida, 3rd edition, pp. 343–388.Google Scholar
  15. Möller H. 1985. Acritical review on the role of pollution as a cause of fish diseases.: In: A.E. Ellis (ed), Fish and Shellfish Pathology. Academic Press, Orlando, pp. 169–182.Google Scholar
  16. Norey, C.G., A. Cryer & J. Kay, 1990. A comparison of cadmium-induced metallothionein gene expression and Me2+ distribution in the tissues of cadmium-sensitive (rainbow trout; Salmo gaidneri) and tolerant (stone loach; Noemacheilus barbatulus) species of freshwater fish. Comp. Biochem. Physiol. 97C(2): 221–225.Google Scholar
  17. Overstreet R.M., 1988. Aquatic pollution problems, Southeastern U.S. coasts: histopathological indicators. Aquat. Toxicol. 11: 213–239.Google Scholar
  18. Randi, A.S., J.M. Monserrat, E.M. Rodriguez & L.A. Romano, 1996. Histopathological effects of cadmium on the gills of the freshwater fish, Macropsobrycon uruguayanae Eigenmann (Pisces, Atherinidae). J. Fish Dis. 19: 311–322.Google Scholar
  19. Rice, C.D., D.H. Kergosien & S.M. Adams, 1996. Innate immune function as a bioindicator of pollution stress in fish. Ecotoxicol. Environ. Safety 33: 186–192.Google Scholar
  20. Rodgers, W.A. & J.L. Gaines, 1975. Lesions of protozoan diseases in fish. In W.A. Ribelin & G. Migaki (eds), The Pathology of Fishes. The University of Wisconsin Press, Madison, Wisconsin, 117–141.Google Scholar
  21. Romeis B., 1989. Mikroskopische Technik. Urban & Schwarzenberg, Mü;nchen, Wien, pp. 390–391.Google Scholar
  22. Sanders B.M., 1993. Stress proteins in aquatic organisms: An environmental perspective. Critical Rev. Toxicol. 23(1): 49–75.Google Scholar
  23. Shul’man G.E., 1974. Life Cycles of Fish. Physiology and Biochemistry. Wiley and Sons, New York, 258 pp.Google Scholar
  24. Snieszko S.F., 1974. The effects of environmental stress on outbreaks of infectious diseases of fishes. J. Fish Biol. 6: 197–208.Google Scholar
  25. Schwaiger, J., F. Bucher, H. Ferling, W. Kalbfus & R.D. Negele, 1992. A prolonged toxicity study on the effects of sublethal concentrations of bis(tri-n-butyltin)oxide (TBTO): Histopathological and histochemical findings in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 23: 31–48.Google Scholar
  26. Schwaiger, J., K. Fent, H. Stecher, H. Ferling & R.D. Negele, 1996. Effects of sublethal concentrations of triphenyltinacetate on rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol. 30: 327–334.Google Scholar
  27. Svobodová, Z., R. Loyd, J. Máchová & B. Vykusová, (1993). Water quality and fish health. EIFAC Technical Paper. No. 54. Rome, FAO, pp. 56–57.Google Scholar
  28. Teh, S.J., S.M. Adams & D.E. Hinton, 1997. Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress. Aquat. Toxicol. 37: 51–70.Google Scholar
  29. Thomas P., 1990. Molecular and biochemical responses of fish to stressors and their potential use in environmental monitoring, Am. Fisheries Soc. Symp. 8: 9–28.Google Scholar
  30. Triebskorn, R., H.-R. Köhler, W. Honnen, M. Schramm & E.F. Müller, 1997. Induction of heat shock proteins, changes in liver ultrastructure, and alterations of fish behavior: are these biomarkers related and are they useful to reflect the state of pollution in the field? J. Aquat. Ecosyst. Stress and Recov. 6: 57–73.Google Scholar
  31. Wedemeyer, G.A., F.P. Meyer & L. Smith, 1976. Environmental stress and fish diseases. In: S.F. Snieszko & H.R. Axelrod (eds), Diseases of Fishes. Book 5. T.F.H. Publications, Neptun City, 73–134.Google Scholar
  32. Weeks, B.A., D.P. Anderson, A.P. DuFour, A. Fairbrother, A.J. Goven, G.P. Lahvis & G. Peters, 1992. Immunological biomarkers to assess environmental stress. In: R.J. Hugget, R.A. Kimerle, P.M. Mehrle, Jr. & H.L. Bergman (eds), Biomarkers, Biochemical, Physiological and Histological Markers of Anthropogenic Stress. SETAC Publication, Lewis Publishers, pp. 211–234.Google Scholar
  33. Weibel E.R., 1979. Stereological methods. I. Practical methods for biological morphometry. Academic Press, London.Google Scholar
  34. Wester, P.W. & J.H. Canton, 1991. The usefulness of histopathology in aquatic toxicity studies. Comp. Biochem. Physiol. 100C: 115–117.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Julia Schwaiger
    • 1
  • Rüdiger Wanke
    • 2
  • Stefan Adam
    • 3
  • Michael Pawert
    • 3
  • Wolfgang Honnen
    • 4
  • Rita Triebskorn
    • 3
  1. 1.Laboratory for Fish PathologyMünchenGermany
  2. 2.Institute of Veterinary PathologyUniversity of MunichMünchenGermany
  3. 3.Dept. Physiological EcologyZoological Institute, University of TübingenTübingenGermany
  4. 4.Applied and Environmental ChemistrySteinbeis-Transfer-Centre ReutlingenReutlingenGermany

Personalised recommendations