Designs, Codes and Cryptography

, Volume 14, Issue 1, pp 5–22 | Cite as

Perfect Mendelsohn Packing Designs with Block Size Five

  • F. E. Bennett
  • J. Yin
  • H. Zhang
  • R. J. R. Abel


A (v, k, 1) perfect Mendelsohn packing design (briefly (v, k, 1)-PMPD) is a pair (X, A) where X is a v-set (of points) and A is a collection of cyclically ordered k-subsets of X (called blocks) such that every ordered pair of points of X appears t-apart in at most one block of A for all t = 1, 2,..., k-1. If no other such packing has more blocks, the packing is said to be maximum and the number of blocks in a maximum packing is called the packing number, denoted by P(v, k, 1). The values of the function P(v, 5, 1) are determined here for all v ≥5 with a few possible exceptions. This result is established by means of a result on incomplete perfect Mendelsohn designs which is of interest in its own right.

perfect Mendelsohn packing designs incomplete perfect Mendelsohn designs transversal designs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. R. Abel and H. Zhang, Direct constructions for certain types of HMOLS, Discrete Math., to appear.Google Scholar
  2. 2.
    R. J. R. Abel, A. E. Brouwer, C. J. Colbourn and J. H. Dintiz, Mutually orthogonal Latin squares (MOLS), in CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds.), CRC Press Inc. (1996) pp. 111-142.Google Scholar
  3. 3.
    R. J. R. Abel, F. E. Bennett and H. Zhang, Holey Steiner pentagon systems, J. Combin. Designs, to appear.Google Scholar
  4. 4.
    R. J. R. Abel, C. J. Colbourn, J. X. Yin and H. Zhang, Existence of incomplete transversal designs with block size five and any index λ, Designs, Codes and Cryptography, Vol. 10 (1997) pp. 275-307.Google Scholar
  5. 5.
    F. E. Bennett and J. Yin, Some results on (v, {5, w*})-PBDs, J. Combin. Designs, Vol. 3 (1995) pp. 455-468.Google Scholar
  6. 6.
    F. E. Bennett, Y. Chang, J. Yin and H. Zhang, Existence of HPMDs with block size five, J. Combin. Designs, Vol. 5 (1997) pp. 257-273.Google Scholar
  7. 7.
    F. E. Bennett and J. Yin, Packings and coverings of the complete directed multigraph with 3-and 4-circuits, Discrete Math., Vol. 162 (1996) pp. 23-29.Google Scholar
  8. 8.
    F. E. Bennett, H. Shen and J. Yin, Incomplete perfect Mendelsohn designs with block size 4 and one hole of size 7, J. Combin. Designs, Vol. 3 (1993) pp. 249-262.Google Scholar
  9. 9.
    F. E. Bennett, H. Shen and J. Yin, Incomplete perfect Mendelsohn designs with block size 4 and holes of size 2 and 3, J. Combin. Designs, Vol. 3 (1994) pp. 171-183.Google Scholar
  10. 10.
    F. E. Bennett and Chen Maorong, Incomplete perfect Mendelsohn designs, Ars Combin., Vol. 31 (1991) pp. 211-216.Google Scholar
  11. 11.
    F. E. Bennett, K. T. Phelps, C. A. Rodger and L. Zhu, Constructions of perfect Mendelsohn designs, Discrete Math., Vol. 103 (1992) pp. 139-151.Google Scholar
  12. 12.
    T. Beth, D. Jungnickel and H. Lenz, Design Theory, Bibliographisches Institut, Zurich (1985).Google Scholar
  13. 13.
    A. E. Brouwer and G. H. J. Van Rees, More mutually orthogonal Latin squares, Discrete Math., Vol. 39 (1982) pp. 263-281.Google Scholar
  14. 14.
    C. J. Colbourn, Some direct constructions for incomplete transversal designs, J. Statist. Planning and Inference, Vol. 56 (1996) pp. 93-104.Google Scholar
  15. 15.
    A. H. Hamel, W. H. Mills, R. C. Mullin, R. Rees, D. R. Stinson and J. Yin, The spectrum of PBD({5, k*}, v) for k = 9, 13, Ars Combinatoria, Vol. 36 (1993) pp. 7-26.Google Scholar
  16. 16.
    H. Hanani, Balanced incomplete block designs and related designs, Discrete Math., Vol. 11 (1975) pp. 255-369.Google Scholar
  17. 17.
    J. D. Horton, Sub-latin squares and incomplete orthogonal arrays, J. Combin. Theory (A), Vol. 16 (1974) pp. 23-33.Google Scholar
  18. 18.
    H. F. MacNeish, Euler squares, Ann. Math., Vol. 23 (1922) pp. 221-227.Google Scholar
  19. 19.
    R. Rees and D. R. Stinson, On the existence of incomplete designs of block size four having one hole, Utilitas Math., Vol. 35 (1989) pp. 119-152.Google Scholar
  20. 20.
    R. M. Wilson, Concerning the number of mutually orthogonal Latin squares, Discrete Math., Vol. 9 (1974) pp. 181-198.Google Scholar
  21. 21.
    R. M. Wilson, Constructions and uses of pairwise balanced designs, Math. Centre Tracts, Vol. 55 (1974) pp. 18-41.Google Scholar
  22. 22.
    L. Zhu, Perfect Mendelsohn designs, JCMCC, Vol. 5 (1989) pp. 43-54.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • F. E. Bennett
    • 1
  • J. Yin
    • 2
  • H. Zhang
    • 3
  • R. J. R. Abel
    • 4
  1. 1.Department of MathematicsMount Saint Vincent UniversityHalifaxCanada
  2. 2.Department of MathematicsSuzhou UniversitySuzhouP. R. China
  3. 3.Department of Computer ScienceUniversity of IowaIowa CityUSA
  4. 4.School of MathematicsUniversity of New South Wales, Kensington, NSW 2033Australia

Personalised recommendations