Advertisement

Water Resources Management

, Volume 14, Issue 4, pp 311–325 | Cite as

Spatial Precipitation Assessment with Elevation by Using Point Cumulative Semivariogram Technique

  • Zekai ŞenEmail author
  • Zeyad Habib
Article

Abstract

Depiction of precipitation change by elevation in an areaindicates the possibilities of orographic rainfall occurrencesin the mountainous regions. In general, precipitation increaseswith elevation but sometimes inverse cases occur locally due toorographic and meteorological features of the area. Inpractice, prior to any quantitative modeling, qualitativeassessments and interpretations help to have sound foundationsin search for a suitable model. In this article, standardizedpoint cumulative semivariogram (SPCSV) methodology is employedfor identification of the precipitation-elevationrelationship. According to relative positions of theprecipitation and elevation SPCSVs four different precipitationcategories are suggested. The application of the methodologyproposed is presented for the precipitation records from YuccaMountain, Nevada, U.S.A.

areal precipitation elevation orography point semivariogram spatial variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burges, T. M. and Webster, R.: 1980, Optimal interpretation and mapping of soil properties. 1. The semi-variogram and punctual kriging. J. Soil Sci. 31, 315–331.Google Scholar
  2. Clark, I.: 1979, The semivariogram - Part 1: Eng. Min. Jour. 180, 90–94.Google Scholar
  3. Davis, J.: 1986, Statistic and Data Analysis in Geology, John Wiley & Sons, Inc., New York, 560 p.Google Scholar
  4. Feller, W.: 1968, An Introduction to Probability Theory and Its Application, JohnWiley & Sons, Inc., 509 pp.Google Scholar
  5. French, R. H.: 1983, A Preliminary Analysis of Precipitation in Southern Nevada, DOE/NV/10162-10. Water Resources Center, Desert Research Institute, Las Vagas, Nevada, 39 pp.Google Scholar
  6. French, R. H.: 1986, Daily, Seasonal and Annual Precipitation at the Nevada, U.S. Department of Energy, Nevada Operations Office, DE-AC08-85NV10384, Publication No. 54042, 64 pp.Google Scholar
  7. Gambolati, G. and Volpi, G.: 1979, Groundwater contour mapping in Venice by stochastic interpolators. 1. Theory. Water Resour. Res. 15, 281–290.Google Scholar
  8. Hevesi, J. A., Istok, J. D. and Flint, A. I.: 1992a, Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part I: Structural Analysis, J. Appl. Meteor. 31, 661–676.Google Scholar
  9. Hevesi, J. A., Istok, J. D. and Flint, A. I.: 1992b, Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part II: Isohyetal Maps, J. Appl. Meteor. 31, 661–676.Google Scholar
  10. Isaaks, E. H. and Srivastava, R. M.: 1989, An Introduction to Applied Geostatistics, Oxford Univ. Press, Oxford, 561 p.Google Scholar
  11. Jones, K. R.: 1981, Arid Zone Hydrology for Agricultural Development, FAO Irrigation and Drainage Paper No. 37, Flood and Agriculture Organization of the United Nations, Rome, 217 pp.Google Scholar
  12. Journel, A. G. and Huijbregts, C. I.: 1978, Mining Geostatistics, Academic Press, London, 710 p.Google Scholar
  13. Kitanidis, P. K. and Vomvoris, E. G.: 1983, A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulation. Water Resour. Res. 19, 677–690.Google Scholar
  14. Lajaunie, G.: 1984, ‘A Geostatistical Approach to Air Pollution Modeling’, in Verly, G., David, M., Journell, A. G. and Marechal, A. (eds), Geostatistics for Natural Resources Characterization, D. Reidel, Dordrecht, pp. 877–891.Google Scholar
  15. McCullogh, M. J.: 1975, Estimating by kriging the reliability of the proposed Trent telemetry network. Comp. Appl. 2, 1031–1041.Google Scholar
  16. Myers, D. E., Begovich, C. L., Butz, T. R. and Kane, V. E.: 1984, Variogram models for regional groundwater chemical data. Math. Geol. 14, 629–644.Google Scholar
  17. Maidment, D. R.: 1993, Handbook of Hydrology, McGraw-Hill, Inc., New York.Google Scholar
  18. Matheron, G.: 1963, Principles of geostatistics. Economic Geology 58, 1246–1266.Google Scholar
  19. McMahon, J. A.: 1985, Deserts, Audobon Society Natural Series, Alfred Knopf, 368 pp.Google Scholar
  20. North, G. R., Bell, T. L. and Cahalan, F.: 1982, Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev. 110, 699–706.Google Scholar
  21. Quiring, R. E.: 1983, Precipitation Climatology of the Nevada Test Site, Nuclear Support Office, 87 pp.Google Scholar
  22. Şen, Z.: 1977, Autorun analysis of hydrologic time series. Jour. Hydrol. 36, 1189–1210.Google Scholar
  23. Şen, Z.: 1989, Cumulative semivariogram models of regionalized variables. Math. Geol. 21, 891–903.Google Scholar
  24. Şen, Z.: 1992, Standard cumulative semivariograms of stationary stochastic processes and regional correlation. Journal of Mathematical Geology 24, 417–435.Google Scholar
  25. Şen, Z.: 1998, Point cumulative semivariogram for identification of heterogeneities in regional seismicity of Turkey, Math. Geol. 30, 767–787Google Scholar
  26. Şen, Z. and Habib, Z.: 1998, Point cumulative semivariogram of areal precipitation in mountainous regions. Journal of Hydrology 205, 81–91.Google Scholar
  27. Taylor, G. I.: 1915, Eddy motion in the atmosphere. Phil. Trans. Roy. Soc., A, 215, 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  1. 1.Civil Engineering Faculty, Hydraulics Division, MaslakTechnical University of IstanbulIstanbulTurkey (author for correspondence, e-mail
  2. 2.Faculty of Science, Department of MeteorologyUniversity of Al-FatehTripoliLibya

Personalised recommendations