Advertisement

Journal of Paleolimnology

, Volume 25, Issue 1, pp 81–99 | Cite as

An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chrironomidae) based on cephalic setation

  • Maria Rieradevall
  • Stephen J. Brooks
Article

Abstract

Tanypodinae usually form an important component in subfossil Chironomidae assemblages but can be difficult to identify beyond subfamily level due to fragmentation of subfossil material. However, generic identification of most subfossil specimens can be achieved by reference to the arrangement of cephalic setae. This paper presents the first identification guide to Holarctic Tanypodinae genera based on the cephalic setae. A total of 33 genera is described and illustrated, of which 9 were previously undescribed, and 26 descriptions are based on new material. A total of 42 species is illustrated to show intrageneric and intraspecific variation. Improved taxonomic resolution will enhance the performance of chironomid-environmental variable inference models and chironomid biostratigraphy.

palaeolimnology palaeoecology Holocene late-glacial taxonomy Tanypodinae midges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilyj, B., 1988. A taxonomic review of Guttipelopia (Diptera: Chironomidae). Entomologica Scand. 19: 1–26.Google Scholar
  2. Birks, H. J. B., 1998. Numerical tools in palaeolimnology-Progress, potentialities, and problems. J. Paleolim. 20: 307–332.Google Scholar
  3. Brodersen, K. P. & C. Lindegaard, 1999. Chironomid assemblages from Danish lakes. Classification, assessment and reconstruction of lake trophic state using a chironomid based chlorophyll a transfer function. In Brodersen, K. P. (ed.), Macroinvertebrate Communities in Danish Lakes: Classification and Trophic Reconstruction. Freshwater Biol. 42: 143–157.Google Scholar
  4. Brooks, S. J. (submitted). Late-glacial fossil midge stratigraphies (Insecta: Diptera: Chironomidae) from the Swiss Alps. Palaeogeogr. Palaeoclimat. Palaeoecol.Google Scholar
  5. Brooks, S. J. & H. J. B. Birks, 2000. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Krå kenes Lake, western Norway. J. Paleolim. (in press).Google Scholar
  6. Brooks, S. J., H. Bennion & H. J. B. Birks (submitted). Chironomidand diatom-total phosphorus inference models and their application to a sediment core from Betton Pool, Shropshire, UK. Freshwater Biol.Google Scholar
  7. Clerk, S., R. Hall, R. Quinlan & J. P. Smol, 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim. 23 (in press).Google Scholar
  8. Cranston, P. S., 1996. Identification guide to the Chironomidae of New South Wales. Australian Water Technologies Pty. Ltd., 375 pp.Google Scholar
  9. Fittkau, E. J. & S. S. Roback, 1983. The larvae of the Tanypodinae-Keys and diagnoses. In: Wiederholm, T. (ed.), Chironomidae of the Holarctic region. Keys and Diagnoses. Part 1, Larvae, pp. 33–110. Entomologica Scand. Suppl. 19: 1–457.Google Scholar
  10. Kowalyk, H. E., 1985. The larval cephalic setae in the Tanypodinae (Diptera: Chironomidae) and their importance in generic determinations. Can. Ent. 117: 67–106Google Scholar
  11. Laville, H., 1971. Recherches sur les chironomides (Diptera) lacustres du Massif de Né ouvielle (Hautes-Pyré né es). Annals Limnol. 7: 173–332.Google Scholar
  12. Little, J., 1999. Development and application of a chironomid-based model for inferring past hypolimnetic oxygen conditions in northeastern Ontario lakes. MSc Thesis, Dept. Biology, Queen's University, Kingston, Ontario.Google Scholar
  13. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, Cladocera, chironomids and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  14. Olander, H., A. Korhola, H. J. B. Birks & T. Blom, 1999. An expanded calibration model for inferring lake-water temperatures from chironomid assemblages in northern Fennoscandia. The Holocene 9: 279–294.Google Scholar
  15. Quinlan, R., J. P. Smol & R. I. Hall, 1998. Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can. J. Fish. Aquat. Sci. 55: 587–596.Google Scholar
  16. Saether, O. A., 1980. Glossary of chironomid morphology terminology (Diptera: Chironomidae). Entomologica Scand. Suppl. 14: 51 pp.Google Scholar
  17. Stur, E. & E. J. Fittkau, 1997. Diagnostic characters distinguishing the larvae of Ablabesmyia and Paramerina, and the first record of Paramerina in Brazil. Spixiana 20: 161–165.Google Scholar
  18. Walker, I. R., 1995. Chironomids as indicators of past environmental change. In: Armitage, P., P., S. Cranston & L. C. V. Pinder (eds), 1995. The Chironomidae: The Biology and Ecology of Non-Biting Midges. Chapman & Hall, London, pp. 405–422.Google Scholar
  19. Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Can. J. Paleolim. 18: 165–178.Google Scholar
  20. Walker, I. R., S. E. Wilson & J. P. Smol, 1995. Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada. Can. J. Fish. Aquat. Sci. 52: 950–960.Google Scholar
  21. Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scand. Suppl. 19: 1–457.Google Scholar
  22. Zavrel, J., 1936. Tanypodinen-Larven und-Puppen aus Partenkirchen. Arch. Hydrobiol. 30: 318–326.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.Department of Ecology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of EntomologyNatural History MuseumLondonUK

Personalised recommendations