Advertisement

International Journal of Computer Vision

, Volume 40, Issue 3, pp 187–197 | Cite as

A Level Set Model for Image Classification

  • Christophe Samson
  • Laure Blanc-Féraud
  • Gilles Aubert
  • Josiane Zerubia
Article

Abstract

We present a supervised classification model based on a variational approach. This model is devoted to find an optimal partition composed of homogeneous classes with regular interfaces. The originality of the proposed approach concerns the definition of a partition by the use of level sets. Each set of regions and boundaries associated to a class is defined by a unique level set function. We use as many level sets as different classes and all these level sets are moving together thanks to forces which interact in order to get an optimal partition. We show how these forces can be defined through the minimization of a unique fonctional. The coupled Partial Differential Equations (PDE) related to the minimization of the functional are considered through a dynamical scheme. Given an initial interface set (zero level set), the different terms of the PDE's are governing the motion of interfaces such that, at convergence, we get an optimal partition as defined above. Each interface is guided by internal forces (regularity of the interface), and external ones (data term, no vacuum, no regions overlapping). Several experiments were conducted on both synthetic and real images.

variational model level set model active regions image classification labelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, G. and Vese, L. 1997. A variational method in image recovery. SIAM J. of Numerical Analysis, 34(5):1948–1979.Google Scholar
  2. Berthod, M., Kato, Z., Yu, S., and Zerubia, J. 1996. Bayesian image classification using Markov random fields. Image and Vision Computing, 14(4):285–293.Google Scholar
  3. Blake, A. and Zisserman, A. 1987. Visual Reconstruction. M.I.T. Press, Boston.Google Scholar
  4. Bouman, C.A. and Shapiro, M. 1994. A multiscale random field model for Bayesian image segmentation. IEEE Trans. on Image Processing, 3:162–177.Google Scholar
  5. Caselles, V., Catte, F., Coll, T., and Dibos, F. 1993. A geometric model for active contours. Numerische Mathematik, 66:1–31.Google Scholar
  6. Caselles, V., Kimmel, R., and Sapiro, G. 1997. Geodesic active contours. International J. of Computer Vision, 22(1):61–79.Google Scholar
  7. Chan, T. and Vese, L. 1999. An active contour model without edges. In Proc. of IEEE ICCV, Corfu, Greece, Sept. 1999, pp. 141–151.Google Scholar
  8. Charbonnier, P., Blanc-Féraud, L., Aubert, G., and Barlaud, M. 1997. Deterministic edge-preserving regularization in computed imaging. IEEE Trans. on Image Processing, 6(2):298–311.Google Scholar
  9. Descombes, X., Morris, R., and Zerubia, J. 1997a. Some improvements to Bayesian image segmentation. Part one: Modelling (in French). Traitement du Signal, 14(4):373–382.Google Scholar
  10. Descombes, X., Morris, R., and Zerubia, J. 1997b. Some improvements to Bayesian image segmentation. Part two: Classification (in French). Traitement du Signal, 14(4):383–395.Google Scholar
  11. Evans, L.C. and Gariepy, R.F. 1992. Measure Theory and Fine Properties of Functions. CRC Press.Google Scholar
  12. Evans, L.C. and Spruck, J. 1992. Motion of level sets by mean curvature. Part II. Trans. of the American Mathematical Society, 330(1):321–332.Google Scholar
  13. Fukunaga, K. 1972. Introduction to Statistical Pattern Recognition. Academic Press: New York.Google Scholar
  14. Kass, M., Witkin, A., and Terzopoulos, D. 1987. Snakes: Active contour models. International J. of Computer Vision, 1:321–331.Google Scholar
  15. Kato, Z. 1994. Multiresolution Markovian modeling for computer vision. Application to SPOT image segmentation (in French and English). Ph.D. Thesis, Université de Nice-Sophia Antipolis, France.Google Scholar
  16. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi, A., Jr., 1996. Conformal curvature flows: From phase transitions to active vision. Arch. Rational Mech. Anal., 134:275–301.Google Scholar
  17. Kittler, J. 1975. Mathematical methods of feature selection in pattern recognition. Int. Journal Man-Machine Studies, 7:609–637.Google Scholar
  18. Lakshmanan, S. and Derin, H. 1989. Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing. IEEE Trans. on Pattern Analysis and Machine Intelligence, 11:799–813.Google Scholar
  19. Lorette, A. 1999. Analyse de texture par m´ethodes Markoviennes et par morphologie math´ematique: Application a l'analyse des zones urbaines sur des images satellitaires. Ph.D. Thesis, Université de Nice-Sophia Antipolis, France.Google Scholar
  20. Malladi, R., Sethian, J.A., and Vemuri, B.C. 1994. Evolutionary fronts for topology independent shape modeling and recovery. In Proc. of the 3rd ECCV, pp. 3–13, Stockholm, Sweden.Google Scholar
  21. Manjunath, B. and Chellappa, R. 1991. Unsupervised texture segmentation using Markov random fields models. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13:478–482.Google Scholar
  22. March, R. 1992. Visual reconstruction using variational methods. Image and Vision Computing, 10:30–38.Google Scholar
  23. March, R. and Dozio, M. 1997. Avariational method for the recovery of smooth boundaries. Image and Vision Computing, 15:705–712.Google Scholar
  24. Morel, J.-M. and Solimini, S. 1995. Variational Methods in Image Segmentation. Birkhäuser, Boston.Google Scholar
  25. Mumford, D. and Shah, J. 1985. Boundary detection by minimizing functionals. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition. San Francisco.Google Scholar
  26. Osher, S. and Sethian, J.A. 1988. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formulation. J. of Computational Physics, 79:12–49.Google Scholar
  27. Paragios, N. and Deriche, R. 1999a. Coupled geodesic active regions for image segmentation. INRIA Research Report RR-3783 (http://www.inria.fr/RRRT/RR-3783.html).Google Scholar
  28. Paragios, N. and Deriche, R. 1999b. Geodesic active regions for supervised texture segmentation. In Proc. of ICCV, Corfu, Greece, Sept. 1999, pp. 926–932.Google Scholar
  29. Pavlidis, T. and Liow, Y.-T. 1988. Integrating region growing and edge detection. In Proc. of IEEE CVPR.Google Scholar
  30. Ronfard, R. 1994. Region-based strategies for active contour models. International J. of Computer Vision, 13(2):229–251.Google Scholar
  31. Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 1999. Multiphase evolution and variational image classification. INRIA Research Report RR-3662 (http://www.inria.fr/RRRT/RR-3662.html).Google Scholar
  32. Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia J. 1999. Simultaneous image classification and restoration using a variational approach. In Proc. of IEEE CVPR, Fort-Collins, USA, June 1999.Google Scholar
  33. Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 2000. A variational model for image classification and restoration. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(5):460–472.Google Scholar
  34. Sussman, M., Smereka, P., and Osher, S. 1994. A level set approach for computing solutions to incompressible two-phase flow. J. of Computational Physics, 114:146–159.Google Scholar
  35. Teboul, S., Blanc-Féraud, L., Aubert, G., and Barlaud, M. 1998. Variational approach for edge-preserving regularization using coupled PDE's. IEEE Trans. on Image Processing, 7(3):387–397.Google Scholar
  36. Teo, P.C., Sapiro, G., and Wandell, B.A. 1997. Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans. on Medical Imaging, 16(6):852–863.Google Scholar
  37. Yezzi, A., Jr., Tsai, A., and Willsky, A. 1999. A statistical approach to snakes for bimodal and trimodal imagery. In Proc. of ICCV, Corfu, Greece, Sept. 1999, pp. 898–903.Google Scholar
  38. Zhao, H.-K., Chan, T., Merriman, B., and Osher, S. 1996. A variational level set approach to multiphase motion. J. of Computational Physics, 127:179–195.Google Scholar
  39. Zhu, S.C. and Yuille, A. 1996. Integrating region growing and edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 18(9):884–900.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Christophe Samson
    • 1
  • Laure Blanc-Féraud
    • 1
    • 2
  • Gilles Aubert
    • 1
    • 3
  • Josiane Zerubia
    • 1
  1. 1.Ariana, a joint research group between CNRS–INRIA–UNSAFrance
  2. 2.I3S Laboratory, CNRS–UNSAFrance
  3. 3.UNSA, Laboratoire J.A. Dieudonné UMR 6621 CNRS, Université de Nice-Sophia AntipolisNice Cedex 2France

Personalised recommendations