Journal of Intelligent and Robotic Systems

, Volume 29, Issue 4, pp 349–387 | Cite as

A Soft Computing Approach to Road Classification

  • J. Shanahan
  • B. Thomas
  • M. Mirmehdi
  • T. Martin
  • N. Campbell
  • J. Baldwin


Current learning approaches to computer vision have mainly focussed on low-level image processing and object recognition, while tending to ignore high-level processing such as understanding. Here we propose an approach to object recognition that facilitates the transition from recognition to understanding. The proposed approach embraces the synergistic spirit of soft computing, exploiting the global search powers of genetic programming to determine fuzzy probabilistic models. It begins by segmenting the images into regions using standard image processing approaches, which are subsequently classified using a discovered fuzzy Cartesian granule feature classifier. Understanding is made possible through the transparent and succinct nature of the discovered models. The recognition of roads in images is taken as an illustrative problem in the vision domain. The discovered fuzzy models while providing high levels of accuracy (97%), also provide understanding of the problem domain through the transparency of the learnt models. The learning step in the proposed approach is compared with other techniques such as decision trees, naïve Bayes and neural networks using a variety of performance criteria such as accuracy, understandability and efficiency.


Probabilistic Model Genetic Programming Object Recognition Fuzzy Model Problem Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almuallim, H. and Dietterich, T. G.: 1991, Learning with irrelevant features, in: AAAI-91, Anaheim, CA, pp. 547-552.Google Scholar
  2. Baldwin, J. F.: 1991a, Combining evidences for evidential reasoning, Internat. J. Intelligent Systems 6(6), 569-616.Google Scholar
  3. Baldwin, J. F.: 1991b, A theory of mass assignments for artificial intelligence, in: A. L. Ralescu (ed.), IJCAI '91 Workshops on Fuzzy Logic and Fuzzy Control, Sydney, Australia, Lecture Notes in Artificial Intelligence, pp. 22-34.Google Scholar
  4. Baldwin, J. F.: 1992, Fuzzy and probabilistic uncertainties, in: Shapiro (ed.), Encyclopaedia of AI, 2nd edn, pp. 528-537.Google Scholar
  5. Baldwin, J. F.: 1993a, Evidential support logic, FRIL and cased base reasoning, Internat. J. Intelligent Systems 8(9), 939-961.Google Scholar
  6. Baldwin, J. F.: 1993b, Probabilistic, fuzzy and evidential reasoning in FRIL (fuzzy relational inference language), in: Two Decades of Fuzzy Control, IEE, London, pp. 7/1-7/4.Google Scholar
  7. Baldwin, J. F., Lawry, J., and Martin, T. P.: 1996, Efficient algorithms for semantic unification, in: IPMU, Granada, Spain, pp. 527-532.Google Scholar
  8. Baldwin, J. F., Martin, T. P., and Pilsworth, B. W.: 1995, FRIL-Fuzzy and Evidential Reasoning in A.I., Research Studies Press, Wiley ISBN 086380159 5.Google Scholar
  9. Baldwin, J. F., Martin, T. P., and Shanahan, J. G.: 1996, Modelling with words using Cartesian granule features, in: ITRC 246, Dept. of Engineering Maths, University of Bristol, UK.Google Scholar
  10. Baldwin, J. F., Martin, T. P., and Shanahan, J. G.: 1997, Modelling with words using Cartesian granule features, in: FUZZ-IEEE, Barcelona, Spain, pp. 1295-1300.Google Scholar
  11. Baldwin, J. F., Martin, T. P., and Shanahan, J. G.: 1998a, Aggregation in Cartesian granule feature models, IPMU, Paris, 6.Google Scholar
  12. Baldwin, J. F., Martin, T. P., and Shanahan, J. G.: 1998b, System identification of fuzzy Cartesian granule feature models using genetic programming, in: A. L. Ralescu and J. G. Shanahan (eds), IJCAI Workshop on Fuzzy Logic in Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 1566, Springer, Berlin, p. 26.Google Scholar
  13. Bastian, A.: 1995, Modelling and identifying fuzzy systems under varying user knowledge, PhD Thesis, Meiji University, Tokyo.Google Scholar
  14. Blum, A. L. and Langley, P.: 1997, Selection of relevant features and examples in machine learning, Artificial Intelligence 97, 245-271.Google Scholar
  15. Bovlik, A. C., Clark, M., and Geisler, W. S.: 1990, Multichannel texture analysis using localised spatial filters, IEEE Trans. on PAMI 12(1), 55-73.Google Scholar
  16. Brooks, R. A.: 1987, Model-based three-dimensional interpretations of two-dimensional images, in: M. A. Fischler and O. Firschein (eds), Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, Kaufmann Publishers, Los Altos, CA, USA, pp. 360-370.Google Scholar
  17. Caelli, T. and Reye, D.: 1993, On the classification of image regions by colour, texture and shape, Pattern Recognition 26(4), 461-470.Google Scholar
  18. Campbell, F.W. and Robson, J. G.: 1968, Application of Fourier analysis to the visibility of gratings, Journal of Physiology 197, 551-566.Google Scholar
  19. Campbell, N. W., Mackeown, W. P. J., Thomas, B. T., and Troscianko, T.: 1997, Interpreting image databases by region classification, Pattern Recognition 30(4), 555-563.Google Scholar
  20. Campbell, N. W., Thomas, B. T., and Troscianko, T.: 1997, Automatic segmentation and classification of outdoor images using neural networks, Internat. J. of Neural Systems 8(1), 137-144.Google Scholar
  21. Connell, J. H. and Brady, M.: 1987, Generating and generalising models of visual objects, Artificial Intelligence 34, 159-183.Google Scholar
  22. Cootes, T. F. and Taylor, C. J.: 1995, Combining point distributions with shape models based on finite-element analysis, Image Vision Computation 13(5), 403-409.Google Scholar
  23. Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J.: 1992, Training models of shape from sets of examples, in: British Machine Vision Conference, Leeds, UK, pp. 9-18.Google Scholar
  24. Daugman, J. G.: 1985, Uncertainty relation for resolution in space, spatial, frequency, and orientation optimised by two-dimensional visual cortical filters, J. Optical Soc. Am. 2(7), 1160-1169.Google Scholar
  25. Devijer, P. A. and Kittler, J.: 1982, Pattern Recognition: A Statistical Approach, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  26. Dietterich, T. G. and Michalski, R. S.: 1983, A comparative review of selected methods for learning from examples, in: R. S. Michalski, J. G. Carbonell, and T.M. Mitchell (eds), Machine Learning: An Artificial Intelligence Approach, Springer, Berlin, pp. 41-81.Google Scholar
  27. Draper, B. A., Collins, R. T., Brolio, J., Hanson, A. R., and Riseman, E. M.: 1989, The schema system, Internat. J. Computer Vision 2, 209-250.Google Scholar
  28. Dubois, D. and Prade, H.: 1991, Fuzzy sets in approximate reasoning 1-inference with possibility distributions, Fuzzy Sets and Systems 40, 143-202.Google Scholar
  29. Fischler, M. A. and Firschein, O.: 1987, Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, Kaufmann Publishers, Los Altos, CA, USA, pp. 765-768.Google Scholar
  30. Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C. J.: 1991, Knowledge discovery in databases: An overview, in: G. Piatetsky-Shapiro and W. J. Frawley (eds), Knowledge Discovery in Databases, AAAI Press/MIT Press, Cambridge, MA, USA, pp. 1-27.Google Scholar
  31. Glassner, A. S.: 1995, Principles of Digital Image Synthesis, Morgan Kaufmann, San Francisco.Google Scholar
  32. Good, I. J.: 1965, The Estimation of Probabilities: An Essay on Modern Bayesian Methods, MIT Press, Cambridge, MA.Google Scholar
  33. Grimson, W. E. L. and Lozano-Perez, T.: 1984, Model-based recognition and localization from sparse range or tactile data, Internat. J. Robotics Res. 3(3), 3-35.Google Scholar
  34. Jain, A. K., Ratha, N. K., and Lakshmanan, S.: 1997, Object detection using Gabor filters, Pattern Recognition 30(2), 295-309.Google Scholar
  35. Jolliffe, I. T.: 1986, Principal Component Analysis, Springer, New York.Google Scholar
  36. Kira, K. and Rendell, L.: 1992, A practical approach to feature selection, in: 9th Conference in Machine Learning, Aberdeen, Scotland, pp. 249-256.Google Scholar
  37. Klir, G. J. and Yuan, B.: 1995, Fuzzy Sets and Fuzzy Logic, Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  38. Kohavi, R. and John, G. H.: 1997, Wrappers for feature selection, Artificial Intelligence 97, 273-324.Google Scholar
  39. Kononenko, I. and Hong, S. J.: 1997, Attribute selection for modelling, FGCS Special Issue in Data Mining (Fall), 34-55.Google Scholar
  40. Kosako, A., Ralescu, A. L., and Shanahan, J. G.: 1994, Fuzzy techniques in image understanding, in: ISCIE Joint Conf. for Automatic Control, Osaka, Japan, pp. 17-22.Google Scholar
  41. Koza, J. R.: 1992, Genetic Programming, MIT Press, Cambridge, MA.Google Scholar
  42. Koza, J. R.: 1994, Genetic Programming II, MIT Press, Cambridge, MA.Google Scholar
  43. Mackeown, W. P. J., Greenway, P., Thomas, B. T., and Wright, W. A.: 1994, Contextual image labelling with a neural network, IEE Vision, Speech and Signal Processing, 238-244.Google Scholar
  44. Malik, I. and Perona, P.: 1990, Preattentive texture discrimination with early vision mechanisms, J. Opt. Society Am. A 7, 923-932.Google Scholar
  45. Michalski, R. S. and Chilausky, R. L.: 1980, Learning by being told and by examples, Internat. J. Policy Analysis and Information Systems 4, 125-161.Google Scholar
  46. Michalski, R. S., Rosenfeld, A., Duric, Z., Maloof, M., and Zhang, Q.: 1998a, Data mining and knowledge discovery: A review of issues and a multistrategy approach, in: R. S. Michalski, I. Bratko, and M. Kubat (eds), Machine Learning and Data Mining, Wiley, New York, pp. 71-112.Google Scholar
  47. Michalski, R. S., Rosenfeld, A., Duric, Z., Maloof, M., and Zhang, Q.: 1998b, Learning patterns in images, in: R. S. Michalski, I. Bratko, and M. Kubat (eds), Machine Learning and Data Mining, Wiley, New York, pp. 241-268.Google Scholar
  48. Mirmehdi, M., Palmer, P. L., Kittler, J., and Dabis, H.: 1999, Feedback control strategies for object recognition, IEEE Trans. Image Processing 8(8), 1084-1101.Google Scholar
  49. Moller, M. F.: 1993, A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks 6, 525-533.Google Scholar
  50. Mukunoki, M., Minoh, M., and Ikeda, K.: 1994, Retrieval of images using pixel based object models, in: IPMU, Paris, France, pp. 1127-1132.Google Scholar
  51. Murase, H. and Nayar, S. K.: 1993, Learning and recognition of 3D objects from appearance, in: IEEE 2nd Qualitative Vision Workshop, New York, pp. 39-50.Google Scholar
  52. Murphy, S. K., Kasif, S., and Salzburg, S.: 1994, A system for induction of oblique decision trees, J. Artificial Intelligence Res. 2, 1-33.Google Scholar
  53. Quinlan, J. R.: 1986, Induction of decision trees, Machine Learning 1(1), 86-106.Google Scholar
  54. Quinlan, J. R.: 1993, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA.Google Scholar
  55. Ralescu, A. L. and Hartani, R.: 1995, Some issues in fuzzy and linguistic modelling, in: Workshop on Linguistic Modelling, FUZZ-IEEE, Yokohama, Japan.Google Scholar
  56. Ralescu, A. L. and Shanahan, J. G.: 1995, Line structure inference in fuzzy perceptual grouping, in: NSF Workshop on Computer Vision, Islamabad, Pakistan, pp. 225-239.Google Scholar
  57. Ralescu, A. L. and Shanahan, J. G.: 1999, Fuzzy perceptual organisation of image structures, Pattern Recognition 32, 1923-1933.Google Scholar
  58. Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: 1986, Learning internal representations by error propagation, in: D. E. Rumelhart and J. L. McClelland (eds), Parallel Distributed Processing, Vol. 1, MIT Press, Cambridge, USA.Google Scholar
  59. Ruspini, E. H.: 1969, A new approach to clustering, Inform. Control 15(1), 22-32.Google Scholar
  60. Schweizer, B. and Sklar, A.: 1961, Associative functions and statistical triangle inequalities, Publ. Math. Debrecen 8, 169-186.Google Scholar
  61. Shanahan, J. G.: 1998, Cartesian granule features: Knowledge discovery of additive models for classification and prediction, PhD Thesis, Dept. of Engineering Maths, University of Bristol, Bristol, UK.Google Scholar
  62. Shanahan, J. G., Baldwin, J. F., Campbell, N., Martin, T. P., Mirmehdi, M., and Thomas, B. T.: 1999, Road recognition using fuzzy classifiers, in: British Machine Vision Conference (BMVC), Nottingham, UK, pp. 432-442.Google Scholar
  63. Shepherd, B. A.: 1983, An appraisal of a decision tree approach to image classification, Internat. Joint Conf. on AI, pp. 473-475.Google Scholar
  64. Strat, T. M.: 1992, Natural Object Recognition, Springer, New York, USA.Google Scholar
  65. Sudkamp, T.: 1992, On probability-possibility transformation, Fuzzy Sets and Systems 51, 73-81.Google Scholar
  66. Syswerda, G.: 1989, Uniform crossover in genetic algorithms, in: J. D. Schaffer (ed.), Third Internat. Conf. on Genetic Algorithms, Morgan Kaufmann, San Francisco, pp. 989-995.Google Scholar
  67. Turk, M. A. and Pentland, A. P.: 1991, Face recognition using eigenfaces, in: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586-591.Google Scholar
  68. Valois, L. R. D. and Valois, K. K. D.: 1993, A multi-stage color model, Vision Research 33(8), 1053-1065.Google Scholar
  69. Valois, R. L. D., Albreacht, D. G., and Thorell, L. G.: 1982, Spatial-frequency selectivity of cells in macaque visual cortex, Visual Research 22, 545-559.Google Scholar
  70. Winston, P. H.: 1975, The Psychology of Computer Vision, McGraw-Hill, New York.Google Scholar
  71. Wood, M. E. J., Campbell, N.W., and Thomas, B. T.: 1997, Searching large image databases using radial basis function neural networks, in: Internat. Conf. on Image Processing and its Applications, London, UK, pp. 116-120.Google Scholar
  72. Zadeh, L. A.: 1968, Probability measures of fuzzy events, J. Math. Analysis Appl. 23, 421-427.Google Scholar
  73. Zadeh, L. A.: 1975a, The concept of a linguistic variable and its application to approximate reasoning. Part 1, Inform. Sci. 8, 199-249.Google Scholar
  74. Zadeh, L. A.: 1975b, The concept of a linguistic variable and its application to approximate reasoning. Part 2, Inform. Sci. 8, 301-357.Google Scholar
  75. Zadeh, L. A.: 1975c, The concept of a linguistic variable and its application to approximate reasoning. Part 3, Inform. Sci. 9, 43-80.Google Scholar
  76. Zadeh, L. A.: 1994, Soft computing and fuzzy logic, IEEE Software 11(6), 48-56.Google Scholar
  77. Zadeh, L. A.: 1996, Fuzzy logic=computing with words, IEEE Trans. Fuzzy Systems 4(2), 103-111.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • J. Shanahan
    • 1
  • B. Thomas
    • 1
  • M. Mirmehdi
    • 1
  • T. Martin
    • 1
  • N. Campbell
    • 1
  • J. Baldwin
    • 1
  1. 1.Advanced Computing Research CentreUniversity of BristolBristolUK

Personalised recommendations