Advertisement

Natural Hazards

, Volume 23, Issue 1, pp 49–64 | Cite as

Management and Maintenance of Forestry:A Catastrophic Stochastic Analysis

  • M. A. Shah
  • Usha Sharma
Article
  • 70 Downloads

Abstract

In this paper, we have carried out a detailedstochastic analysis of the Ludwig-Jones–Holling modelpertaining to the occasional population burst ofthe spruce budworms in the coniferous forests of Canada.Our analysis explains the abrupt burst of the populationin the form of cusp catastrophe. A qualitative recipe hasbeen suggested for avoiding the catastrophe.

Catastrophe diffusion approximation Fokker–Planck equation critical slowing down anomalous variance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, L.: 1974, Stochastic Differential Equations, John Wiley & Sons, New York.Google Scholar
  2. Baksha, M. W.: 1997, Biology, ecology and control of Gamar defoliation, Calopepla leavana Latr. (Chrysomelidia: Coleoptera) in Bangladesh, J. Forest Science 26(2), 31–36.Google Scholar
  3. Bhat, U. N.: 1984, Elements of Applied Stochastic Processes, 2nd edn, John Wiley & Sons, New York.Google Scholar
  4. Browne, P. G.: 1968, Pest and Diseases of Forest Plantation Trees, Clarendon Press, Oxford.Google Scholar
  5. Cox, D. R. and Miller, H. D.: 1965, The Theory of Stochastic Process, Chapman and Hall, London.Google Scholar
  6. Dekker, H.: 1979, On the critical point of a Malthus-Verlhust process, J. Chem. Phys. 21, 189–191.Google Scholar
  7. Gilmore, R.: 1981, Catastrophe Theory for Scientists and Engineers, John Wiley & Sons, New York.Google Scholar
  8. Haken, H.: 1983, Synergetics, 3rd edn, Springer-Verlag, Berlin.Google Scholar
  9. Holling, C. S. (ed.): 1978, Adaptive Environment Assessment and Management, IIASA Series, Wiley, New York.Google Scholar
  10. Karmeshu, Sharma, C. L. and Jain, V. P.: 1992, Nonlinear stochastic models of innovation diffusion with multiple adoption levels, J. Sci. Ind. Res. 51, 229–241.Google Scholar
  11. Ludwig, D., Jones, D. D., and Holling, C. S.: 1978, Qualitative analysis of insect outbreak systems: The spruce budworm and forest, J. Animal Ecology 47, 315-332.Google Scholar
  12. Mathur, R. N. and Singh, B.: 1961, A list of insect pests of forest plant in India and the adjacent countries, Indian Forest Bulletin (New Series) Entomology 171(8), 60–61Google Scholar
  13. Nicolis, G. and Prigogine, I.: 1977, Self Organization in Non-Equilibrium Systems, John Wiley & Sons, New York.Google Scholar
  14. Sharma, C. L and Pathria, R. K.: Critical behaviour of a class of non-linear stochastic model with cubic interaction, Phys. Rev. A-28, 2993-3002.Google Scholar
  15. Van Kampen, N. G.: 1981, Stochastic Processes in Physics and Chemistry, North Holland, Amsterdam.Google Scholar
  16. Wright, D. J.: 1983, Catastrophe theory in management forecasting and decision making', J. Opl. Res. Soc. 34(10), 935-942.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • M. A. Shah
    • 1
  • Usha Sharma
    • 2
  1. 1.Department of StatisticsUniversity of RajshahiRajshahiBangladesh
  2. 2.Department of Statistics and Operational ResearchKurukshetra UniversityKurukshetraIndia

Personalised recommendations