International Journal of Computer Vision

, Volume 33, Issue 1, pp 5–27 | Cite as

Topographic Maps and Local Contrast Changes in Natural Images

  • Vicent Caselles
  • Bartomeu Coll
  • Jean-Michel Morel

Abstract

We call “natural” image any photograph of an outdoor or indoor scene taken by a standard camera. We discuss the physical generation process of natural images as a combination of occlusions, transparencies and contrast changes. This description fits to the phenomenological description of Gaetano Kanizsa according to which visual perception tends to remain stable with respect to these basic operations. We define a contrast invariant presentation of the digital image, the topographic map, where the subjacent occlusion-transparency structure is put into evidence by the interplay of level lines. We prove that each topographic map represents a class of images invariant with respect to local contrast changes. Several visualization strategies of the topographic map are proposed and implemented and mathematical arguments are developed to establish stability properties of the topographic map under digitization.

topographic map mathematical morphology level set junctions contrast changes digitization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliprantis, Ch.D. and Border, K.C. 1994. Infinite Dimensional Analysis. Springer Verlag.Google Scholar
  2. Alison Noble, J. 1992. Finding half boundaries and junctions in images. Image and Vision Computing, 10(4).Google Scholar
  3. Alvarez, L., Guichard, F., Lions, P.L., and Morel, J.M. 1993. Axioms and fundamental equations of image processing. Arch. Rational Mechanics and Anal. 16(IX):200–257.Google Scholar
  4. Alvarez, L. and Morales, F. 1994. Affine morphological multiscale analysis of corners and multiple junctions. International Journal of Computer Vision, 25(2):95–108.Google Scholar
  5. Alvarez, L. and Morel, J.M. 1994. Formalization and computational aspects of image analysis. Acta Numerica, pp. 1–59.Google Scholar
  6. Ambrosio, L., Caselles, V., Masnou, S., and Morel, J.M. 1999. The Connected Components of Sets of Finite Perimeter and Applications to Image Processing. Preprint SNS, Pisa, Italy.Google Scholar
  7. Ballester, C., Cubero-Castan, E., Gonzalez, M., and Morel, J.M. 1998. Contrast Invariant Image Intersection, preprint.Google Scholar
  8. Beymer, D.J. 1991. Finding junctions using the image gradient. Computer Vision and Pattern Recognition, Lahaiana, Maui, Hawai, pp. 720–721.Google Scholar
  9. Brunnström, K., Linderberg, T., and Eklundh, J.O. 1992. Active detection and classification of junctions by foveation with a head-eye system guided by the scale-space primal sketch. Technical Report ISRN KTH/NA/P-91/31, CVAP, Royal Institute of Technology.Google Scholar
  10. Canny, J.F. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:769–798.Google Scholar
  11. Caselles, V., Catté, F., Coll, B., and Dibos, F. 1993. A Geometric Model for Edge Detection. Numerische Mathematik, 66:1–31.Google Scholar
  12. Caselles, V., Coll, B., and Morel, J.M. 1995. A Kanizsa programme. Preprint CEREMADE 9539, Univ. Paris-Dauphine.Google Scholar
  13. Caselles, V., Coll, B., and Morel, J.M. 1997. Scale-space versus topographic map for natural images. In Scale-space '97. Proc. First Conference on Scale Space, Utrecht.Google Scholar
  14. Caselles, V., Lisani, J.L., Morel, J.M., and Sapiro, G. 1997. Shape preserving local histogram modification. Technical Report HPL–97–58.Google Scholar
  15. Caselles, V., Morel, J.M., and Sbert, C. 1998. An axiomatic approach to image interpolation. Special Issue on PDE's, Geometry Driven Diffusion and Image Processing. IEEE Transactions on Image Processing, 7(3):376–386.Google Scholar
  16. Castleman, K.R. 1996. Digital Image Processing. Prentice Hall.Google Scholar
  17. Choquet, G. 1966. Topology, Academic Press: New York.Google Scholar
  18. Deriche, R. and Blaszka, T. 1993. Recovering and characterizing image features using and efficient model based approach. Proc. CVPR, New York, pp. 530–535.Google Scholar
  19. Deriche, R. and Giraudon, G. 1993. A computational approach for corner and vertex detection. International Journal of Computer Vision, 10(2):101–124.Google Scholar
  20. Eatwell, J., Milgate, M., and Newman, P. (Eds.). 1994. The New Palgrave, a Dictionnary of Economics, 4 volumes. The Macmillan Press Limited.Google Scholar
  21. Evans, L.C. and Gariepy, R. 1992. Lectures Notes on Measure Theory and Fine Properties of Functions. CRC Press.Google Scholar
  22. Fitch, J.P., Coyle, E.C., and Gallagher, N.C. 1985. Threshold decomposition of multi-dimensional ranked order operations. IEEE Trans. on Circuits and Systems, 5:445–450.Google Scholar
  23. Florack, L.M.J. 1993. The syntactical structure of scalar images. Ph.D. Thesis, University of Utrecht, The Netherlands.Google Scholar
  24. Froment, J. et al. 1997. MegaWave, Image Processing Environment, Ceremade, Université Paris-Dauphine.Google Scholar
  25. Froment, J., A Functional Analysis Model for Natural Images Permitting Structured Compression. Preprint 9833, CMCA, ENS Cachan, France.Google Scholar
  26. Fuchs, W. 1923. Experimentelle Untersuchungen ueber das simultane Hintereinandersehen auf der selben Sehrichtung. Zeitschrift fuer Psychologie, 91:154–253.Google Scholar
  27. Haar Romeny, B.M. ter. 1994. Geometry-Driven Diffusion in Computer Vision. Kluwer Academic Publications.Google Scholar
  28. Haar Romeny, B.M. ter, Florack, L.M.J., Koendering, J.J., and Viergever, M.A. 1991. Invariant third-order properties of isophotes: T-junction detection. In Proc. Scandinavian Conference on Image Analysis.Google Scholar
  29. Haralick, R.M. and Shapiro, L.G. 1992. Computer and Robot Vision, I. Addison-Wesley.Google Scholar
  30. Hecht, E. and Zajac, A. 1986. Optica. Addison Wesley Iberoamericana.Google Scholar
  31. Heitger, F. and von der Heydt, R. 1993. A computational model of neural contour processing: Figure-ground segretation and illusory contours. In 4th Proc. International Conference on Computer Vision, Berlin, Germany. IEEE Computer Society Press, pp. 32–40.Google Scholar
  32. Illueca, C. 1995. Influence of contrast of the recognition of defocused letters: A geometrical model. Vision Research.Google Scholar
  33. Iverson, L.A. and Zucker, S.W. 1995. Logical/linear operators for image curves. IEEE Trans. Pattern Anal. Machine Intell. 17(10): 982–996.Google Scholar
  34. Julesz, B. 1981. Textons, the elements of texture perception, and their interactions. Nature, 290(3).Google Scholar
  35. Julesz, B. 1986. Texton gradients: The texton theory revisited. Biological Cybernetics, 54:245–251.Google Scholar
  36. Kanizsa, G. 1979. Organization in Vision. NY, Praeger.Google Scholar
  37. Kanizsa, G. 1991. Vedere e pensare. Il Mulino, Bologna.Google Scholar
  38. Kimia, B.B., Tannenbaum, A., and Zucker, S.W. 1992. On the evolution of curves via a function of curvature, 1: The classical case. J. of Math. Analysis and Applications, 163(2).Google Scholar
  39. Koenderink, J.J. 1984. The structure of images. Biological Cybernetics, 50:363–370.Google Scholar
  40. Leclerc, Y.G. and Zucker, S.W. 1987. The local structure of Image discontinuities in one dimension. IEEE Trans. Pattern Anal. Machine Intell., 9:4.Google Scholar
  41. Lindeberg, T. 1994. Junction detection with automatic selection of detection scales and localization scales. In Proc. First Int. Conf. on Image Processing, Austin, Texas, vol. 1, pp. 924–928.Google Scholar
  42. Malik, J. 1987. Interpreting line drawings of curved objects. Int. J. Comp. Vision, 1.Google Scholar
  43. Malladi, R., Sethian J., and Vemuri, B.C. 1995. Shape modelling with front propagation: A level set approach. IEEE Trans. on Pattern Anal. Machine Intell., 17(2):158–175.Google Scholar
  44. Marr, D. 1981. Vision, Freeman and Co.Google Scholar
  45. Masnou, S. and Morel, J.M. 1997. Restauration d'images et filtres de Yaroslarsky. In Proc. Workshop GRETSI 97, Grenoble, France.Google Scholar
  46. Masnou, S. and Morel, J.M. 1998a. Level lines based disocclusion. In Proc. Int. Conf. Image Processing, ICIP'98, Chicago, USA, vol. III, pp. 259–263.Google Scholar
  47. Masnou, S. and Morel, J.M. 1998b. Image restoration involving connectedness. In Proc. of Workshop “Digital Image Processing”, Vienna, Austria 1997, SPIE, vol. 3346.Google Scholar
  48. Matheron, G. 1975. Random Sets and Integral Geometry, JohnWiley, NY.Google Scholar
  49. Monasse, P. and Guichard, F. 1998. Fast computation of a contrast invariant image representation. Cahiers de l'ENS Cachan, 9815.Google Scholar
  50. Morel, J.M. and Solimini, S. 1994. Variational Methods in Image Processing. Birkhäuser.Google Scholar
  51. Nitzberg, M. and Mumford, D. 1990. The 2.1 sketch. In Proc. of the Third International Conference on Computer Vision, Osaka.Google Scholar
  52. Nitzberg, M., Mumford, D., and Shiota, T. 1993. Filtering, Segmentation and Depth. Lecture Notes in Computer Science, 662, Springer-Verlag.Google Scholar
  53. Osher, S. and Sethian, J. 1988. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formulation. J. Comp. Physics, 79:12–49.Google Scholar
  54. Rudin, L.I. 1987. Images, numerical analysis of singularities and shock filters. Ph.D. Dissertation, Caltech, Pasadena, CA, n5250:TR.Google Scholar
  55. Rudin, L.I., Osher, S., and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–269.Google Scholar
  56. Sapiro, G. and Tannenbaum, A. 1993. Affine invariant scale space. The International Journal of Computer Vision, 11(1):25–44.Google Scholar
  57. Sapiro, G. and Tannenbaum, A. 1994. On affine plane curve evolution. Journal of Functional Analysis, 119(1):79–120.Google Scholar
  58. Serra, J. 1982. Image Analysis and Mathematical Morphology. Academic Press.Google Scholar
  59. Vincent, L. 1993. Grayscale area openings and closings, their efficient implementation and applications. In FirstWorkshop on Mathematical Morphology and its Applications to Signal Processing, J. Serra and Ph. Salembier (Eds.), Barcelona, Spain, pp. 22–27.Google Scholar
  60. Wertheimer, M. 1923. Untersuchungen zur Lehre der Gestalt, II. Psychologische Forschung, 4:301–350.Google Scholar
  61. Witkin, A.P. 1983. Scale-space filtering. In Proc. of IJCAI, Karlsruhe, pp. 1019–1021.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Vicent Caselles
    • 1
  • Bartomeu Coll
    • 1
  • Jean-Michel Morel
    • 2
  1. 1.Department of Mathematics and InformaticsUniversity of Illes BalearsPalma de MallorcaSpain
  2. 2.CMLA, ENSCachanFrance

Personalised recommendations