Journal of Paleolimnology

, Volume 25, Issue 1, pp 43–64

Oxygen isotope ratios of organic matter in arctic lakes as a paleoclimate proxy: field and laboratory investigations

  • Peter E. Sauer
  • Gifford H. Miller
  • Jonathan T. Overpeck
Article

Abstract

Paleoclimate research based on the stable isotopic composition of lake sediments is often hampered by the lack of preservation of suitable material for isotopic analysis. We examined organic material as a proxy for past water isotopic composition in a series of experiments. First, we cultured aquatic moss under constant illumination, temperature, and water δ18O, and show that new cellulose records source water δ18O precisely (r2 = 0.9997). Second, we analyzed paired lakewater and vegetation samples collected from sites spanning strong climatic gradients. In field conditions, the relationship between organic δ18O and water δ18O is more variable, though it is still controlled by environmental water isotopic composition. However, terrestrial mosses in the arctic are often significantly enriched in δ18O relative to aquatic mosses in nearby lakes due to their use of different water sources. Third, we measured δ18O of cellulose extracted from disseminated sedimentary organic material. In the majority of the middle- to high-arctic lakes in this study, the δ18O of disseminated sediment cellulose is greatly enriched relative to the expected values based on lakewater δ18O, suggesting a significant component of terrestrial cellulose. This interpretation is supported by radiocarbon dates from a Holocene sediment core in which 14C ages of sediment cellulose are 700-5000 yrs older than the enclosing sediments. We conclude that aquatic cellulose can be used as a reliable tracer of lakewater isotope ratios, but terrestrial cellulose often dominates the sedimentary cellulose pool in places such as Baffin Island where sedimentation rates are low enough to allow the degradation of aquatic cellulose. Care must be taken when interpreting sediment cellulose δ18O records where diagenesis has played a role, because terrestrial cellulose is more resistant to degradation, and therefore can predominate in environments with low organic carbon burial.

δ18organic matter cellulose arctic lake sediments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, M. B. & T. W. Stafford Jr., 1996. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quat. Res. 45: 300–311.Google Scholar
  2. AES, 1982. Climatic Atlas Climatique- Canada. Canada Department of the Environment (Environment Canada). Ottawa, Ontario.Google Scholar
  3. Aravena, R. & B. G. Warner, 1992. Oxygen-18 composition of Sphagnum, and microenvironmental water relations. Bryologist 95: 445–448.Google Scholar
  4. Aucour, A.-M., C. Hillaire-Marcel & R. Bonnefille, 1993. A 30,000 year record of 13C and 18O changes in organic matter from an equatorial peatbog. In Swart, P. K., K. C. Lohmann, J. McKenzie & S. Savin (eds), Climate Change in Continental Isotope Records. Geophysical Monograph 78. American Geophysical Union, Washington, D.C., 343–351.Google Scholar
  5. Beuning, K. R. M., K. Kelts, E. Ito & T. C. Johnson, 1997. Paleohydrology of Lake Victoria, East Africa, inferred from 18O/16O ratios in sediment cellulose. Geology 25: 1083–1086.Google Scholar
  6. Bigeleisen, J., M. L. Pearlman & A. C. Prosser, 1952. Conversion of hydrogenic material for isotopic analysis. Analyt. Chem. 24: 1356–1357.Google Scholar
  7. Brenninkmeijer, C. A. M., B. van Geel & W. G. Mook, 1982. Variations in the D/H and 18O/16O ratios in cellulose extracted from a peat bog core. Earth Planet. Sci. Lett. 61: 283–290.Google Scholar
  8. Browning, B. L., 1963. The composition and chemical reactions of wood. In Browning, B. L. (ed.), The Chemistry of Wood. Robert E. Krieger Publishing Company, Malabar, Florida, 57–101.Google Scholar
  9. Buhay, W. M. & R. N. Betcher, 1998. Paleohydrologic implications of 18O enriched Lake Agassiz water. J. Paleolim. 19: 285–296.Google Scholar
  10. COHMAP, 1988. Climatic changes of the last 18,000 years: Observations and model simulations. Science 241: 1043–1052.Google Scholar
  11. Cooper, L. W. & M. J. DeNiro, 1989. Oxygen-18 content of atmospheric oxygen does not affect the oxygen isotope relationship between environmental water and cellulose in a submerged aquatic plant, Egeria densa Planch. Plant Physiol. 91: 536–541.Google Scholar
  12. Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16: 436–468.Google Scholar
  13. Dansgaard, W., S. J. Johnsen, H. B. Clausen & C. C. Langway, 1971. Climatic record revealed by the Camp Century ice core. In Turekian, K. K. (ed.), The Late Cenozoic Glacial Ages. Yale University Press, New Haven, Connecticut, 37–56.Google Scholar
  14. DeNiro, M. J. & L. W. Cooper, 1989. Post-photosynthetic modification of oxygen isotope ratios of carbohydrates in the potato: implications for paleoclimatic reconstruction based upon isotopic analysis of wood cellulose. Geochim. Cosmochim. Acta 53: 2573–2580.Google Scholar
  15. DeNiro, M. J. & S. Epstein, 1979. Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide, and water. Science 204: 51–53.Google Scholar
  16. DeNiro, M. J. & S. Epstein, 1981. Isotopic composition of cellulose from aquatic organisms. Geochim. Cosmochim. Acta 45: 1885–1894.Google Scholar
  17. Duthie, H. C., J.-R. Yang, T. W. D. Edwards, B. B. Wolfe & B. G. Warner, 1996. Hamilton Harbour, Ontario: 8300 years of limnological and environmental change inferred from microfossil and isotopic analyses. J. Paleolim. 15: 79–97.Google Scholar
  18. Dyer, A. F. & J. G. Duckett (eds), 1984. The Experimental Biology of Bryophytes, Vol. 19. Academic Press, London, 281 pp.Google Scholar
  19. Edlund, S. A., 1984. High Arctic plants: New limits emerge. Geosci. 13: 10–13.Google Scholar
  20. Edwards, T. W. D., 1993. Interpreting past climate from stable isotopes in continental organic matter. In Swart, P. K., K. C. Lohmann, J. McKenzie & S. Savin (eds), Climatic Change in Continental Isotopic Records. Geophysical Monograph 78. American Geophysical Union, Washington, D.C., 333–341.Google Scholar
  21. Edwards, T. W. D. & J. H. McAndrews, 1989. Paleohydrology of a Canadian Shield lake inferred from 18O in sediment cellulose. Can. J. Earth Sci. 26: 1850–1859.Google Scholar
  22. Edwards, T. W. D., B. B. Wolfe & G. M. MacDonald, 1996. Influence of changing atmospheric circulation on precipitation d18Otemperature relations in Canada during the Holocene. Quat. Res. 46: 211–218.Google Scholar
  23. Epstein, S. & T. Mayeda, 1953. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 4: 213–224.Google Scholar
  24. Epstein, S., P. Thompson & C. J. Yapp, 1977. Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198: 1209–1215.Google Scholar
  25. Ertel, J. R. & J. I. Hedges, 1984. The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions. Geochim. Cosmochim. Acta 48: 2065–2074.Google Scholar
  26. Gibson, J. J., 1996. Non-steady isotopic methods for estimating lake evaporation: Development and validation in Arctic Canada. PhD Dissertation, University of Waterloo, Canada, 238 pp.Google Scholar
  27. Gibson, J. J., T. W. D. Edwards, G. G. Bursey & T. D. Prowse, 1993. Estimating evaporation using stable isotopes: Quantitative results and sensitivity analysis for two catchments in northern Canada. Nordic Hydrol. 24: 79–94.Google Scholar
  28. Gibson, J. J., T. W. D. Edwards & T. D. Prowse, 1994. Evaporation in the North: Overview of Quantitative Studies Using Stable Isotopes. In Cohen, S. J. (ed.), Mackenzie Basin Impact Study (MBIS) Interim Report #2: Proceedings of the Sixth Biennial AES/DIAND Meeting on Northern Climate & Mid Study Workshop of the Mackenzie Basin Impact Study. Environment Canada, Downsview, Canada, 138–150.Google Scholar
  29. Gibson, J. J., T. D. Prowse & T. W. D. Edwards, 1996. Evaporation from a small lake in the continental Arctic using multiple methods. Nordic Hydrol. 27: 1–24.Google Scholar
  30. Gonfiantini, R., 1986. Environmental isotopes in lake studies. In Fritz, P. & J. C. Fontes (eds), Handbook of Environmental Isotope Geochemistry: V. 2: The Terrestrial Environment B. Elsevier Press, New York, 113–168.Google Scholar
  31. Green, J. W., 1963. Wood Cellulose. In Whistler, R. L. (ed.), Methods in Carbohydrate Chemistry Vol. 3: Cellulose. 3. Academic Press, New York, 9–21.Google Scholar
  32. Hedges, J. I., J. R. Ertel & E. B. Leopold, 1982. Lignin geochemistry of a Late Quaternary sediment core from Lake Washington. Geochim. Cosmochim. Acta 46: 1869–1877.Google Scholar
  33. Hedges, J. I. & D. C. Mann, 1979a. The characterization of plant tissues by their lignin oxidation products. Geochim. Cosmochim. Acta 43: 1803–1807.Google Scholar
  34. Hedges, J. I. & D. C. Mann, 1979b. The lignin geochemistry of marine sediments from the southern Washington coast. Geochim. Cosmochim. Acta 43: 1809–1818.Google Scholar
  35. Huang, Y., K. H. Freeman, T. I. Eglinton & F. A. Street-Perrott, 1999. d13C analyses of individual lignin phenols in Quaternary lake sediments: A novel proxy for deciphering past terrestrial vegetation changes. Geology 27: 471–474.Google Scholar
  36. Hutchinson, G. E., 1957. A Treatise on Limnology. I. Geography, Physics, and Chemistry. John Wiley and Sons, Inc., New York, 1015 pp.Google Scholar
  37. IAEA-GNIP, 1997. Global Network of Isotopes in Precipitation. International Atomic Energy Agency. Vienna, Austria. Data available by FTP from site www.ngdc.noaa.gov/paleo.Google Scholar
  38. Immergut, E. H., 1963. Cellulose. In Browning, B. L. (ed.), The Chemistry of Wood. Robert E. Krieger Publishing Co., Malabar, Florida, 103–190.Google Scholar
  39. Ishiwatari, R. & M. Uzaki, 1987. Diagenetic changes of lignin compounds in a more than 0.6 million-year-old lacustrine sediment (Lake Biwa, Japan). Geochim. Cosmochim. Acta 51: 321–328.Google Scholar
  40. Jacobs, J. D., J. T. Andrews & S. Funder, 1985. Environmental background. In Andrews, J. T. (ed.), Quaternary Environments: Eastern Canadian Arctic, Baffin Bay and Western Greenland. Allen and Unwin, Boston, MA, 26–68.Google Scholar
  41. Jouzel, J., C. Lorius, J. R. Petit, C. Genthon, N. I. Barkov, V. M. Kotlyakov & V. M. Petrov, 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329: 403–408.Google Scholar
  42. Keeley, J. E., L. O. Sternberg & M. J. DeNiro, 1986. The use of stable isotopes in the study of photosynthesis in freshwater plants. Aquat. Bot. 26: 213–223.Google Scholar
  43. Keen, R. A., 1980. Temperature and circulation anomalies in the eastern Canadian Arctic, Summer 1946- 76. INSTAAR (University of Colorado) Occasional Paper 34. Boulder, CO.Google Scholar
  44. Kelts, K. & K. Hsü , 1978. Freshwater carbonate sedimentation. In Lerman, A. (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, New York, 295–323.Google Scholar
  45. Krishnamurthy, R. V., K. A. Syrup, M. Baskaran & A. Long, 1995. Late glacial climate record of Midwestern United States from the hydrogen isotope ratios of lake organic matter. Science 269: 1565–1567.Google Scholar
  46. Langway, C. C., H. Oeschger & W. Dansgaard, 1985. Greenland Ice Core: Geophysics, Geochemistry, and the Environment. Geophysical Monograph 33. American Geophysical Union, Washington, D.C., 118 pp.Google Scholar
  47. MacDonald, G. M., R. P. Beukens, W. E. Kieser & D. H. Vitt, 1987. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the “ice-free corridor” of western Canada. Geology 15: 837–840.Google Scholar
  48. MacDonald, G. M., T. W. D. Edwards, K. A. Moser, R. Pienitz & J. P. Smol, 1993. Rapid response of treeline vegetation and lakes to past climate warming. Nature 361: 243–246.Google Scholar
  49. Meyers, P. A. & R. Ishiwatari, 1993. Lacustrine organic geochemistry - an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20: 867–900.Google Scholar
  50. Miller, G. H., W. N. Mode, A. P. Wolfe, P. E. Sauer, O. Bennike, S. L. Forman, S. K. Short, T. W. Stafford Jr. & K. M. Williams, 1999. Stratified interglacial lacustrine sediments from Baffin Island, Arctic Canada: Chronology and paleoenvironment and Implications. Quat. Sci. Rev. 18: 789–810.Google Scholar
  51. Nesje, A., 1992. A piston corer for lacustrine and marine sediments. Arctic Alp. Res. 24: 257–259.Google Scholar
  52. Neumann, J., 1959. Maximum depth and average depth of lakes. J. Fish. Board Can. 16: 923–927.Google Scholar
  53. Orem, W. H., S. M. Colman & H. E. Lerch, 1997. Lignin phenols in sediments of Lake Baikal, Siberia: Application to paleoenvironmental studies. Org. Geochem. 27: 153–172.Google Scholar
  54. Rozanski, K., L. Araguá s-Araguá s & R. Gonfiantini, 1993. Isotopic patterns in modern global precipitation. In Swart, P. K., K. C. Lohmann, J. McKenzie & S. Savin (eds), Climate Change in Continental Isotopic Records. Geophysical Monograph 78. American Geophysical Union, Washington, D.C., 1–36.Google Scholar
  55. Sauer, P. E., 1997. Records of climate and late Quaternary paleoclimate from stable isotopes in lakes and lake sediments, Eastern Canadian Arctic. PhD Dissertation, University of Colorado, Boulder, 238 pp.Google Scholar
  56. Sauer, P. E. & L. d. S. L. O. Sternberg, 1994. Improved method for the determination of oxygen isotopic composition of cellulose. Analyt. Chem. 66: 2409–2411.Google Scholar
  57. Shemesh, A. & D. Peteet, 1998. Oxygen isotopes in fresh water biogenic opal: Northeastern U.S. Allerod-Younger Dryas temperature shift. Geophys. Res. Lett. 25: 1935.Google Scholar
  58. Sternberg, L., M. J. DeNiro & J. E. Keeley, 1984. Hydrogen, oxygen, and carbon isotope ratios of cellulose from submerged aquatic crassulacean acid metabolism and non-crassulacean acid metabolism plants [Isoetes howellii, Chara contraria, Eleocharis acidularis]. Plant Physiol. 76: 68–70.Google Scholar
  59. Sternberg, L. d. S. L., 1988. D/H ratios of environmental water recorded by D/H ratios of plant lipids. Nature 333: 59–61.Google Scholar
  60. Sternberg, L. d. S. L., 1989a. Oxygen and hydrogen isotope measurements in plant cellulose analysis. In Linskens, H. F. & J. F. Jackson (eds), Modern Methods of Plant Analysis: Vol. 10, Plant Fibers. 10. Springer-Verlag, New York, 89–99.Google Scholar
  61. Sternberg, L. d. S. L. O., 1989b. Oxygen and hydrogen isotope ratios in plant cellulose: mechanisms and applications. In Rundel, P. W., J. R. Ehleringer & K. A. Nagy (eds), Stable Isotopes in Ecological Research. 68. Springer-Verlag, New York, 124–141.Google Scholar
  62. Sternberg, L. d. S. L., M. J. DeNiro & R. A. Savidge, 1986. Oxygen isotope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis. Plant Physiol. 82: 423–427.Google Scholar
  63. Sternberg, L. O. & M. J. D. DeNiro, 1983. Biogeochemical implications of the isotope equilibrium fractionation factor between the oxygen atoms of acetone and water. Geochim. Cosmochim. Acta 47: 2271–2274.Google Scholar
  64. Stuiver, M., 1970. Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. J. Geophys. Res. 75: 5247–5257.Google Scholar
  65. Terwilliger, V. J. & M. J. DeNiro, 1995. Hydrogen isotope fractionation in wood-producing avocado seedlings: Biological constraints to paleoclimatic interpretations of dD values in tree ring cellulose nitrate. Geochim. Cosmochim. Acta 59: 5199–5207.Google Scholar
  66. Vaughn, B. H., J. W. C. White, M. Delmotte, M. Trolier, O. Cattani & M. Stievenard, 1998. An automated system for hydrogen isotope analysis of water. Chem. Geol. 152: 309–319.Google Scholar
  67. Wetzel, R. G., 1983. Limnology. Holt, Rinehart and Winston Inc, Orlando, Florida, 767 pp.Google Scholar
  68. Wolfe, B. B. & T. W. D. Edwards, 1997. Hydrologic control on the oxygen-isotope relation between sediment cellulose and lake water, western Taimyr Peninsula, Russia: Implications for the use of surface-sediment calibrations in paleolimnology. J. Paleolim. 18: 283–291.Google Scholar
  69. Wolfe, B. B., T. W. D. Edwards & R. Aravena, 1999. Changes in carbon and nitrogen cycling during tree-line retreat recorded in the isotopic composition of lacustrine organic matter, western Taimyr Peninsula, Russia. The Holocene 9: 215–222.Google Scholar
  70. Wolfe, B. B., T. W. D. Edwards, R. Aravena & G. M. MacDonald, 1996. Rapid Holocene hydrologic change along boreal treeline revealed by d13C and d18O in organic lake sediments, Northwest Territories, Canada. J. Paleolim. 15: 171–181.Google Scholar
  71. Yakir, D., 1992. Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates. Plant Cell. Environ. 15: 1005–1020.Google Scholar
  72. Yakir, D. & M. J. DeNiro, 1990. Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L. Plant Physiol. 93: 325–332.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Peter E. Sauer
    • 1
  • Gifford H. Miller
    • 1
  • Jonathan T. Overpeck
    • 2
  1. 1.INSTAAR and Department of Geological SciencesUniversity of ColoradoBoulderUSA
  2. 2.ISPE and Department of GeosciencesUniversity of ArizonaTucsonUSA

Personalised recommendations