Landscape Ecology

, Volume 15, Issue 2, pp 115–130 | Cite as

Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation

  • Jochen A.G. Jaeger


Anthropogenic fragmentation of landscapes is known as a major reason for the loss of species in industrialized countries. Landscape fragmentation caused by roads, railway lines, extension of settlement areas, etc., further enhances the dispersion of pollutants and acoustic emissions and affects local climatic conditions, water balance, scenery, and land use. In this study, three new measures of fragmentation are introduced: degree of landscape division (D), splitting index (S), and effective mesh size (m). They characterize the anthropogenic penetration of landscapes from a geometric point of view and are calculated from the distribution function of the remaining patch sizes.

First, D, S, and m are defined, their mathematical properties are discussed, and their reactions to the six fragmentation phases of perforation, incision, dissection, dissipation, shrinkage, and attrition are analysed. Then they are compared with five other known fragmentation indices with respect to nine suitability criteria such as intuitive interpretation, low sensivity to very small patches, monotonous reaction to different fragmentation phases, and detection of structural differences. Their ability to distinguish spatial patterns is illustrated by means of two series of model patterns. In particular, the effective mesh size (m), representing an intensive and area-proportionately additive measure, proves to be well suited for comparing the fragmentation of regions with differing total size.

effective mesh size fragmentation phases landscape division landscape fragmentation landscape indices landscape pattern quantitative methods spatial heterogeneity splitting index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, M. and Scheringer, M. 1994. Problems in environmental risk assessment and the need for proxy measures. Fresenius Env Bull 3: 487-492.Google Scholar
  2. Bowen, G. W. and Burgess, R. L. 1981. A quantitative analysis of forest island pattern in selected Ohio landscapes. ORNL Environmental Sciences Division, Publication No. 1719, ORNL/TM-7759. Oak Ridge, TN, 111 pp.Google Scholar
  3. Burgess, R. L. and Sharpe, D. M. (eds). 1981. Forest Island Dynamics in Man-Dominated Landscapes. Ecological Studies, Vol. 41, Springer-Verlag, New York, NY, 310 pp.Google Scholar
  4. Chandler, D. 1987. Introduction to Modern Statistical Mechanics. Oxford University Press Inc., New York, NY, 274 pp.Google Scholar
  5. Deggau, M., Krack, E., Radermacher, W., Schmid, B. and Stralla, H. (German Federal Statistical Office, Wiesbaden). 1992. Methodik der Auswertung von Daten zur realen Bodennutzung im Hinblick auf den Bodenschutz. Teilbeitrag zum Praxistest des Statistischen Informationssystems zur Bodennutzung (STABIS). Forschungsbericht 107 06 001/03 UBA-FB 92-084, edited by the German Federal Environmental Agency, Berlin, 292 pp.Google Scholar
  6. Forman, R. T. T. and Godron, M. 1986. Landscape Ecology. John Wiley & Sons Inc., New York, NY, 620 pp.Google Scholar
  7. Forman, R. T. T. 1995. Land Mosaics. The ecology of landscapes and regions. Cambridge University Press, Cambridge, 632 pp.Google Scholar
  8. Franklin, J. F. and Forman, R. T. T. 1987. Creating landscape patterns by forest cutting: Ecological consequences and principles. Landscape Ecol 1: 5-18.Google Scholar
  9. Geoghegan, J., Wainger, L. A. and Bockstael, N. E. 1997. Spatial landscape indices in a hedonic framework: an ecological economics analysis using GIS. Ecol Economics 23: 251-264.Google Scholar
  10. Game, M. 1980. Best shape for nature reserves. Nature 287: 630-632.Google Scholar
  11. Gustafson, E. J. 1998. Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1: 143-156.Google Scholar
  12. Haber, W. 1993. Ökologische Grundlagen des Umweltschutzes. Economica Verlag, Bonn, 98 pp.Google Scholar
  13. Haines-Young, R. and Chopping, M. 1996. Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Prog Phys Geography 20: 418-445.Google Scholar
  14. Hargis, C. D., Bissonette, J. A. and David, J. L. 1998. The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecol 13: 167-186.Google Scholar
  15. Harris, L. D. 1984. The Fragmented Forest: Island Biogeography Theory and the Presevation of Biotic Diversity. University of Chicago Press, Chicago, IL, 211 pp.Google Scholar
  16. Krack-Roberg, E., Riege-Wcislo, W. and Wirthmann, A. 1995. UGR Materials. Concept of an accounting system for land use and land cover. Final report to the working group 'Physical Environmental Accounting', German Federal Statistical Office, Wiesbaden, 175 pp.Google Scholar
  17. Kreyszig, E. 1979. Statistische Methoden und ihre Anwendungen. Vandenhoeck and Ruprecht, Göttingen 11965, 71979, 451 pp.Google Scholar
  18. Li, H. and Reynolds, J. F. 1995. On definition and quantification of heterogeneity. Oikos 73: 280-284.Google Scholar
  19. McGarigal, K. and Marks, B. J. 1995. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. General Technical Report PNW-GTR-351. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. Portland, OR. 122 pp.Google Scholar
  20. Müller, D., Perrochet, S., Faist, M. and Jaeger, J. 1998. Ernähren und Erholen mit knapper werdender Landschaft. In Netzstadt: Transdisziplinäre Methoden zum Umbau urbaner Systeme. Ergebnisse im Forschungsprojekt Synoikos. pp. 28-59. Edited by P. Baccini and F. Oswald. vdf Hochschulverlag an der ETH Zürich, Zürich.Google Scholar
  21. O'Neill, R. V., Krummel, J. R., Gardner, R. H., Sugihara, G., Jackson, B., DeAngelis, D. L., Milne, B. T., Turner, M. G., Zygmunt, B., Christensen, S. W., Dale, V. H. and Graham, R. L. 1988. Indices of landscape pattern. Landscape Ecol 1: 153-162.Google Scholar
  22. Patton, D. R. 1975. A diversity index for quantifying habitat 'edge'. Wildlife Society Bulletin 3: 171-173.Google Scholar
  23. Plotnick, R. E., Gardner, R. H. and O'Neill, R. V. 1993. Lacunarity indices as measures of landscape texture. Landscape Ecology 8: 201-211.Google Scholar
  24. Riitters, K. H., O'Neill, R. V., Hunsaker, C. T., Wickham, J. D., Yankee, D. H., Timmins, S. P., Jones, K. B. and Jackson, B. L. 1995. A vector analysis of landscape pattern and structure metrics. Landscape Ecol 10: 23-39.Google Scholar
  25. Riitters, K. H., O'Neill, R. V., Wickham, J. D. and Jones, K. B. 1996. A note on contagion indices for landscape analysis. Landscape Ecol 11: 197-202.Google Scholar
  26. Saunders, D., Hobbs, R. and Margules, C. 1991. Biological consequences of ecosystem fragmentation: a review. Cons Biol 5: 18-32.Google Scholar
  27. Schmidt-Bleek, F. 1993. MIPS Re-Visited. Fresenius Env Bull 2: 407-412.Google Scholar
  28. Straumann, N. 1986. Thermodynamik. Lecture Notes in Physics, Vol. 265, Springer-Verlag, Berlin, 140 pp.Google Scholar
  29. Taylor, P. D., Fahrig, L., Henein, K. and Merriam, G. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571-573.Google Scholar
  30. Turner, M. G. 1989. Landscape ecology: the effect of pattern on process. Ann Rev Ecol Syst 20: 171-197.Google Scholar
  31. Turner, M. G. and Gardner, R. H. (eds). 1991. Quantitative Methods in Landscape Ecology: The Analysis and Interpretation of Landscape Heterogeneity. Springer-Verlag, New York, NY, 536 pp.Google Scholar
  32. Van Dorp, D. and Opdam, P. F. M. 1987. Effects of patch size, isolation and regional abundance on forest bird communities. Landscape Ecol 1: 59-73.Google Scholar
  33. Wetzel, R. G. 1975. Limnology. W. B. Saunders Comp., Philadelphia, 743 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jochen A.G. Jaeger
    • 1
  1. 1.Center of Technology Assessment in Baden-WürttembergStuttgartGermany

Personalised recommendations