Journal of Paleolimnology

, Volume 24, Issue 2, pp 109–123 | Cite as

Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden

  • Peter Roseacute;n
  • Roland Hall
  • Tom Korsman
  • Ingemar Renberg
Article

Abstract

The relationships between diatoms (Bacillariophyceae) in surface sediments of lakes and summer air temperature, pH and total organic carbon concentration (TOC) were explored along a steep climatic gradient in northern Sweden to provide a tool to infer past climate conditions from sediment cores. The study sites are in an area with low human impact and range from boreal forest to alpine tundra. Canonical correspondence analysis (CCA) constrained to mean July air temperature and pH clearly showed that diatom community composition was different between lakes situated in conifer-, mountain birch- and alpine-vegetation zones. As a consequence, diatoms and multivariate ordination methods can be used to infer past changes in treeline position and dominant forest type. Quantitative inference models were developed to estimate mean July air temperature, pH and TOC from sedimentary diatom assemblages using weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regression. Relationships between diatoms and mean July air temperature were independent of lake-water pH, TOC, alkalinity and maximum depth. The results demonstrated that diatoms in lake sediments can provide useful and independent quantitative information for estimating past changes in mean July air temperature (R2jack = 0.62, RMSEP = 0.86 °C; R2 and root mean squared error of prediction (RMSEP) based on jack-knifing), pH (R2jack = 0.61, RMSEP = 0.30) and TOC (R2jack = 0.49, RMSEP = 1.33 mg l-1). The paper focuses mainly on the relationship between diatom community composition and mean July air temperature, but the relationships to pH and TOC are also discussed.

diatoms climate change temperature pH transfer functions lake sediments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandersson, H., C. Karlström & S. Larsson-McCann, 1991. Temperaturen och nederbörden i Sverige 1961-1990. SMHI, the Swedish Meteorological and Hydrological Institute, No. 81, pp. 88.Google Scholar
  2. Bigler, C., R. I. Hall & I. Renberg, In press. A diatom training set for paleoclimatic inferences from lakes in Northern Sweden. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie.Google Scholar
  3. Birks H. H., H. J. B. Birks, P. E. Kaland & D. Moe (eds), 1988. The cultural landscape, past, present and future. Cambridge University Press, 521 pp.Google Scholar
  4. Birks, H. J. B., 1995. Quantitative paleoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modeling of Quaternary Science Data. Quat. Res. Assoc., Cambridge, 161-254.Google Scholar
  5. Birks, H. J. B., 1998. D. G. Frey & E. S. Deevey Review #1: Numerical tools in palaeolimnology-progress, potentialities, and problems. J. Paleolim. 20: 307-332.Google Scholar
  6. Camburn, K. E., J. C. Kingston & D. F. Charles, 1984-1986. PIRLA Diatom Iconograph. Report Number 3, PIRLA Unpublished Report Series, Bloomington, IN. (53 photographic plates, 1059 figures).Google Scholar
  7. Engstrom, D. R., 1987. Influence of vegetation and hydrology on the humus budgets of Labrador lakes. Can. J. Fish. Aquat. Sci. 44: 1306-1314.Google Scholar
  8. Huisman, J., H. Olff & L. F. M. Fresco, 1993. A hierarchical set of models for species response analysis (version 2.2). J. Veg. Sci. 4: 37-46.Google Scholar
  9. Hustedt, F. 1930-1966. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In Rabenhorst's, Dr L. Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Akademische Verlagsgesellschaft, Leipzig, 3 Vols.Google Scholar
  10. Juggins, S. & C. J. F. ter Braak, 1993. CALIBRATE-a program for species-environment calibration by [weighted averaging] partial-least-squares regression. Unpublished computer program, Environmental Change Research Centre, University College London, 20 pp.Google Scholar
  11. Juggins, S., 1994. Gaussian Logit Regression. Unpublished computer program, version 1.1, Department of Geography, University of Newcastle, Newcastle-upon-Tyne NE1 7RH, UK.Google Scholar
  12. Koinig, K. A., R. Schmidt, S. Sommaruga-Wögrath, R. Tessadri & R. Psenner, 1998. Climate change as the primary cause for pH shifts in a high alpine lake. Wat. Air Soil Poll. 104: 167-180.Google Scholar
  13. Korsman, T. & H. J. B. Birks, 1996. Diatom-based water chemistry reconstructions from northern Sweden: A comparison of reconstruction techniques. J. Paleolim. 15: 65-77.Google Scholar
  14. Krammer, K. & H. Lange-Bertalot, 1986-1997. Bacillariophyceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa. Vol. 2 (1-4). Gustav Fischer Verlag, Stuttgart/Jena.Google Scholar
  15. Laaksonen, K., 1976. The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921-1950). Ann. Acad. Sci. Fennicae 119, series A: 5-19.Google Scholar
  16. Livingstone, D. M. & A. F. Lotter, 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. J. Paleolim. 19: 181-198.Google Scholar
  17. Lohammar, G., 1965. The vegetation of Swedish lakes. Acta Phytogeogr. Suec. 50: 28-47.Google Scholar
  18. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395-420.Google Scholar
  19. Lotter, A. F., R. Pienitz & R. Schmidt, 1999. Diatoms as indicators of environmental change near Arctic and Alpine treeline. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, 205-226.Google Scholar
  20. MacDonald, G. M., T. W. D Edwards, K. A. Moser, R. Pienitz & J. P. Smol, 1993. Rapid response of treeline vegetation and lakes to past climate warming. Nature 361: 243-246.Google Scholar
  21. Munro, M. A. R., A. M. Kreiser, R. W. Battarbee, S. Juggins, A. C. Stevenson, D. S. Anderson, N. J. Anderson, F. Berge, H. J. B. Birks, R. B. Davis, R. J. Flower, S. C. Fritz, E. Y. Haworth, V. J. Jones, J. C. Kingston & I. Renberg. 1990. Diatom quality control and data handling. Phil. Trans. R. Soc. Lond. B. 327: 257-261.Google Scholar
  22. Nordiska ministerrådet, 1984. Vegetationstyper i Norden. Berlings, Arlöv, Sweden, 539 pp.Google Scholar
  23. Pienitz, R. & J. P. Smol, 1993. Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269/270: 391-404.Google Scholar
  24. Pienitz, R., J. P. Smol & H. J. B. Birks, 1995. Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J. Paleolim. 13: 21-49.Google Scholar
  25. Pienitz, R., J. P. Smol & G. M. MacDonald, 1999. Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arctic Antarctic Alp. Res. 31: 82-93.Google Scholar
  26. Psenner, R. & R. Schmidt, 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356: 781-783.Google Scholar
  27. Renberg, I., 1990. A procedure for preparing large sets of diatom slides from sediment cores. J. Paleolim. 4: 87-90.Google Scholar
  28. Renberg, I., 1991. The HON-Kajak sediment corer. J. Paleolim. 6: 167-170.Google Scholar
  29. Renberg, I., T. Korsman & N. J. Anderson, 1993. A temporal perspective of lake acidification in Sweden. Ambio 22: 264-271.Google Scholar
  30. Renberg, I., M. W. Persson & O. Emteryd, 1994. Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368: 323-326.Google Scholar
  31. Rühling, Å., 1994. Atmospheric heavy metal deposition in Europe-estimations based on moss analysis. Nordic Council of Ministers, Nord 1994:9, 58 pp.Google Scholar
  32. Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R Munro & I. Renberg, 1991. The Surface Water Acidification Project Palaeolimnology Programme: Modern Diatom/ Lake-water Chemistry Data-set. ENSIS Publishing. London, 86 pp.Google Scholar
  33. ter Braak, C. J. F., 1987. Ordination. In Jongman, R. G. H., C. J. F. ter Braak & O. F. S. Van Tongeren (eds), Data Analysis in Community and Landscape Ecology, Pudoc, Wageningen, 91-173.Google Scholar
  34. ter Braak, C. J. F., 1988a. Partial canonical correspondence analysis. In Bock, H. H. (ed.), Classification Methods and Related Methods of Data Analysis. North-Holland, Amsterdam, 551-558.Google Scholar
  35. ter Braak, C. J. F., 1988b. CANOCO: A FORTRAN program for canonical community ordination by (partial) (detrended) (canonical) correspondence analysis, principal component analysis, and redundancy analysis (Version 2.1). Tech. Rep. No. LWA-88-02. Institute of Applied Computer Science, Statistical Department Wageningen, 6700 AC Wageningen, The Netherlands.Google Scholar
  36. ter Braak, C. J. F., 1991. CANOCO version 3.12. Agricultural Mathematics Group, Wageningen.Google Scholar
  37. ter Braak, C. J. F., 1995. Non-linear methods for multivariate statistical calibration and their use in paleoecology: A comparison of inverse (k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometr. Intell. Lab. Sys. 28: 165-180.Google Scholar
  38. ter Braak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3-11.Google Scholar
  39. ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271-317.Google Scholar
  40. ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209-223.Google Scholar
  41. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485-502.Google Scholar
  42. ter Braak, C. J. F., S. Juggins, H. J. B. Birks & van der Voet, 1993. Weighted averaging partial least squares regression (WA-PLS): Definition and comparison with other methods for species-environment calibration. In Patil, G. P. & C. R. Rao (eds), Multivariate Environmental Statistics, Elsevier Science Publishers, Amsterdam, pp. 525-560.Google Scholar
  43. Vinebrooke, R. D., R. I. Hall, P. R. Leavitt & B. F. Cumming, 1998. Fossil pigments as indicators of phototrophic response to salinity and climatic change in lakes of western Canada. Can. J. Fish. Aquat. Sci. 54: 668-681.Google Scholar
  44. Vyverman, W. & K. Sabbe, 1995. Diatom-temperature transfer functions based on the altitudinal zonation of diatom assemblages in Papua New Guinea: a possible tool in the reconstruction of regional palaeoclimatic changes. J. Paleolim. 13: 65-77.Google Scholar
  45. Weckström, J., A. Korhola & T. Blom, 1997. Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes. Hydrobiologia 347: 171-184.Google Scholar
  46. Wunsam, S., R. Schmidt & R. Klee, 1995. Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat. Sci. 57: 360-386.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Peter Roseacute;n
    • 1
    • 2
  • Roland Hall
    • 1
    • 2
  • Tom Korsman
    • 3
  • Ingemar Renberg
    • 4
  1. 1.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  2. 2.Abisko Scientific Research StationClimate Impacts Research CentreAbiskoSweden
  3. 3.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  4. 4.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden

Personalised recommendations