Journal of Intelligent and Robotic Systems

, Volume 25, Issue 4, pp 311–340 | Cite as

A Novel Scheme for Human-Friendly and Time-Delays Robust Neuropredictive Teleoperation

  • Platon A. Prokopiou
  • Spyros G. Tzafestas
  • William S. Harwin


A novel Neuropredictive Teleoperation (NPT) Scheme is presented. The design results from two key ideas: the exploitation of the measured or estimated neural input to the human arm or its electromyograph (EMG) as the system input and the employment of a predictor of the arm movement, based on this neural signal and an arm model, to compensate for time delays in the system. Although a multitude of such models, as well as measuring devices for the neural signals and the EMG, have been proposed, current telemanipulator research has only been considering highly simplified arm models. In the present design, the bilateral constraint that the master and slave are simultaneously compliant to each other's state (equal positions and forces) is abandoned, thus obtaining a “simple to analyze” succession of only locally controlled modules, and a robustness to time delays of up to 500 ms. The proposed designs were inspired by well established physiological evidence that the brain, rather than controlling the movement on-line, “programs” the arm with an action plan of a complete movement, which is then executed largely in open loop, regulated only by local reflex loops. As a model of the human arm the well-established Stark model is employed, whose mathematical representation is modified to make it suitable for an engineering application. The proposed scheme is however valid for any arm model. BIBO-stability and passivity results for a variety of local control laws are reported. Simulation results and comparisons with “traditional” designs also highlight the advantages of the proposed design.

neuropredictive teleoperation human arm model time-delays compensation hypothetical neural input/electromyograph prediction enhanced Yokokohji–Yoshikawa scheme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kazerooni, H., Tsai, T.-I., and Hollerbach, K.: A controller design framework for telerobotic systems, IEEE Trans. Control Systems Technol. 1(1) (1993), 50–62.Google Scholar
  2. 2.
    Kobrinski, A. A. and Kobrinski, A. E.: Bras Manipulateurs des Robots, Editions Mir, Moscow, 1989 (in French).Google Scholar
  3. 3.
    Lee, S. and Lee, H. S.: Modeling, design and evaluation of advanced teleoperator control systems with short time delay, IEEE Trans. Robotics Automat. 9(5) (1993), 607–623.Google Scholar
  4. 4.
    Prokopiou, P. A., Harwin, W. S., and Tzafestas, S. G.: Exploiting a human arm model for fast, intuitive and time-delays-robust telemanipulation, in: S. G. Tzafestas (ed.), Advances in Manufacturing: Decision, Control and Information Technology, Springer, Berlin/London, 1999, pp. 255–266.Google Scholar
  5. 5.
    Prokopiou, P. A., Harwin, W. S., and Tzafestas, S. G.: Enhancement of a telemanipulator design with a human arm model, in: S. G. Tzafestas and G. Schmidt (eds), Progress in System and Robot Analysis and Control Design, Springer, Berlin/London, 1999, pp. 445–456.Google Scholar
  6. 6.
    Tzafestas, S. G. and Prokopiou, P. A.: Compensation of teleoperator uncertainties with a sliding mode controller, J. Robotic Computer-Integrated Manufacturing 13(1) (1997), 9–20.Google Scholar
  7. 7.
    Yokokohji, Y. and Yoshikawa, T.: Bilateral control of master–slave manipulators for ideal kinesthetic coupling – formulation and experiment, IEEE Trans. Robotics Automat. 10(5) (1994), 605–619.Google Scholar
  8. 8.
    Van de Vegte, J. M. E., Milgram, P., and Kwong, R. H.: Teleoperator control models: Effects of time delay and imperfect system knowledge, IEEE Trans. Systems Man Cybernet. 20(6) (1990), 1258–1272.Google Scholar
  9. 9.
    Niemeyer, G. and Slotine, J.-J. E.: Stable adaptive teleoperation, IEEE J. Oceanic Engineering 16(1) (1991), 152–162.Google Scholar
  10. 10.
    Niemeyer, G. and Slotine, J.-J. E.: Towards force reflecting teleoperation through the internet, in: Proc. of 1998 EEE Internat. Conf. on Robot. Automat., Leuven, Belgium, 1998, pp. 1909–1915.Google Scholar
  11. 11.
    Prokopiou, P. A.: Neuropredictive teleoperation and related subjects, Internal Report, THRIL, Department of Cybernetics, University of Reading, UK and IRAL, Department of Electrical and Computer Engineering, National Technical University of Athens, Greece, July 1998.Google Scholar
  12. 12.
    Prokopiou, P. A., Harwin, W. S., and Tzafestas, S. G.: Fast, intuitive and time-delays-robust telemanipulator designs using a human arm model, in: Proc. of the 6th Symp. on Intel. Robot. Systems (SIRS'98), Edinburgh, UK, 21–23 July 1998, pp. 7–16.Google Scholar
  13. 13.
    Sheridan, T. B.: Space teleoperation through time dealy: Review and prognosis, IEEE Trans. Robotics Automat. 9(5) (1993), 592–606.Google Scholar
  14. 14.
    Lawrence, D. A.: Stability and transparency in bilateral teleoperation, IEEE Trans. Robotics Automat. 9(5) (1993), 624–637.Google Scholar
  15. 15.
    Anderson, R. J. and Spong, M. W.: Bilateral control if teleoperators with time delay, IEEE Trans. Automat. Control 34(5) (1989), 494–501.Google Scholar
  16. 16.
    Peñín, L. F., Caballero, A., Acaril, R., and Barientos, A.: Human behaviour modeling in Master–Slave teleoperation with kinesthetic feedback, in: Proc. IEEE Internat. Conf. on Robot. Automat., Leuven, Belgium, 1998, pp. 2244–2249.Google Scholar
  17. 17.
    Durlach, N.: The potential of teleoperation for entertainment and education, Presence 6(3) (1997), 350–351.Google Scholar
  18. 18.
    Sano, A., Fujimoto, H., and Tanaka, M.: Gain-scheduled compensation for time delay of bilateral teleoperation, in: Proc. of IEEE Internat. Conf. on Robot. Automat., Leuven, Belgium, 1998, pp. 1916–1923.Google Scholar
  19. 19.
    Brady, K. and Tarn, T.-J.: Internet-bassed remote teleoperation, in: Proc. of IEEE Internat. Conf. on Robot. Automat., Leuven, Belgium, 1998, pp. 65–70.Google Scholar
  20. 20.
    Colgate, J. E.: Robust impedance shaping telemanipulation, IEEE Trans. Robotics Automat. 9(4) (1993), 374–384.Google Scholar
  21. 21.
    Prokopiou, P. A., Tzafestas, C. S., Tzafestas, E. S., and Tzafestas, S. G.: Neural network robust adaptive telemanipulator control: Comparison with sliding-mode control, Syst. Anal.Modelling Simulation 33(3) (1998), 259–294.Google Scholar
  22. 22.
    Harwin, W. S., Rahman, T., and Foulds, R.: A review of design issues in rehabilitation robotics with reference to North American research, IEEE J. Rehabilitation Engrg. 31 (1995), 3–13.Google Scholar
  23. 23.
    Sheridan, T. B.: Telerobotics, Automation and Human Supervisory Control, MIT Press, Cambridge, MA, 1992.Google Scholar
  24. 24.
    Hill, A. V.: The heat of shortening and the dynamic constants of muscle, Proc. Royal Society B 126 (1938), 136–195.Google Scholar
  25. 25.
    Prochazka, A., Gillard, D., and Bennett, D. J.: Positive force feedback control of muscles, J. Neurophysiology 77(6) (1997), 3226–3236.Google Scholar
  26. 26.
    Ramos, C. F. and Stark, L.W.: Postural maintenance during fast forward bending: A model simulation experiment determines a reduced trajectory, Experimental Brain Research 82 (1990), 651–657.Google Scholar
  27. 27.
    Efranian, A., Chizeck, H. J., and Hashemi, R. M.: Using evoked EMG as a synthetic force sensor of isometric electrically stimulated muscle, IEEE Trans. Biomedical Engrg. 45(2) (1998), 188–202.Google Scholar
  28. 28.
    Gollee, H. and Hunt, K. J.: Nonlinear modelling and control of electrically stimulated muscle: A local model network approach, Internat. J. Control 68(6) (1997), 1259–1288.Google Scholar
  29. 29.
    Bobet, J., Stein, R. B., and Oguztoreli, M. N.: A linear time-varying model of force generation in skeletal muscle, IEEE Trans. Biomedical Engrg. 40(10) (M.N.), 1000–1006.Google Scholar
  30. 30.
    Bernotas, L., Crago, P., and Chizeck, H. J.: A discrete-time model of electrically stimulated muscle, IEEE Trans. Biomedical Engrg. 33(9) (1986), 829–838.Google Scholar
  31. 31.
    Gossett, J. H., Clymer, B. D., and Hemami, H.: Long and short delay feddback on one-link nonlinear forearm with coactivation, IEEE Trans. Systems Man Cybernet. 24(9) (1994), 1317–1327.Google Scholar
  32. 32.
    Bennett, D. J., Hollerbach, J. M., Xu, Y., and Hunter, I. W.: Time varying stifness of human elbow joint during cyclic voluntary movement, Experimental Brain Res. 88 (1992), 433–442.Google Scholar
  33. 33.
    Haugland, M. K. and Sinkjaer, T.: Cutaneous whole nerve recordings used for correction of footdrop in hemiplegic man, IEEE Trans. Rehabilitation Engrg. 3(4) (1995), 307–317.Google Scholar
  34. 34.
    Narendra, K. S. and Annaswamy, A. M.: Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989.Google Scholar
  35. 35.
    Zangemeister, W. H., Lehman, S., and Stark, L.W.: Simulation of head movement trajectories: Model and fit to main sequence, Biological Cybernetics 41 (1981), 19–32.Google Scholar
  36. 36.
    Houk, J. C., Buckingham, J. T., and Barto, A. G.: Models of the cerebellum and motor learning, Behavioral Brain Sci. 19 (1996), 368–383.Google Scholar
  37. 37.
    Miall, R. C., Weir, D. J., Wolpert, D. M., and Stein, J. F.: Is the cerebellum a Smith predictor?, J. Motor Behavior 25(3) (1993), 203–216.Google Scholar
  38. 38.
    Towhidkhah, F., Gander, R. E., and Wood, H. C.: Model predictive control: A model for joint movement, J. Motor Behavior 29(3) (1997), 209–222.Google Scholar
  39. 39.
    Kyberd, P. J. and Chappell, P. H.: The Southampton hand: An intelligent myolectric prosthesis, J. Rehab. Res. Development 31(4) (1994), 326–335.Google Scholar
  40. 40.
    Gottlieb, G.: A computational model if the simplest motor program, J. Motor Behavior 25(3) (1993), 153–161.Google Scholar
  41. 41.
    Prokopiou, P. A., Harwin, W. S., and Tzafestas, S. G.: Variable-time-delays-robust telemanipulation through master state prediction, AIM '99: 1999 IEEE/ASME Internat. Conf. on Advan. Intel. Mechatr., Atlanta, USA, September 19–22, 1999.Google Scholar
  42. 42.
    Hannaford, B., Winters, J. M., Chou, C. P., and Marbot, P.H.: The anthroform arm: A system for the study of spinal circuits, Ann. Biomed. Engrg. 23 (1995) (L. Stark Special Issue), 399–408.Google Scholar
  43. 43.
    Tzamtzi, M. P. and Tzafestas, S. G.: Stability robustness of feedback linearizable systems with input unmodelled dynamics, Proc. IEE: Control Theory Appl. 145(6) (1998).Google Scholar
  44. 44.
    Tzafestas, C. S., Kheddar, A., and Coiffet, P.: Kinesthetic feedback on the human hand interacting with virtual environments, in: S. G. Tzafestas and G. Schmidt (eds), Progress in System and Robot Analysis and Control Design, Springer, Berlin/London, 1999, 397–422.Google Scholar
  45. 45.
    Tzafestas, S. G. and Tzafestas, C. S.: Virtual reality in telerobotics: An overview and two case studies, ELECTROSOFT '99: The 4th Internat. Conf. on Software for Electr. Engrg. Analysis and Design, Seville, Spain, May 17–19, 1999.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Platon A. Prokopiou
    • 1
  • Spyros G. Tzafestas
    • 1
  • William S. Harwin
    • 2
  1. 1.Intelligent Robotics and Automation Laboratory, Department of Electrical and Computer EngineeringNational Technical University of Athens, ZografouAthensGreece
  2. 2.The Human-Robot Interface Laboratory, Department of CyberneticsUniversity of Reading, WhiteknightsReadingUK

Personalised recommendations