Journal of Computer-Aided Molecular Design

, Volume 14, Issue 4, pp 383–401 | Cite as

Fast prediction and visualization of protein binding pockets with PASS

  • G. Patrick BradyJr
  • Pieter F.W. Stouten


PASS (Putative Active Sites with Spheres) is a simple computational tool that uses geometry to characterize regions of buried volume in proteins and to identify positions likely to represent binding sites based upon the size, shape, and burial extent of these volumes. Its utility as a predictive tool for binding site identification is tested by predicting known binding sites of proteins in the PDB using both complexed macromolecules and their corresponding apo-protein structures. The results indicate that PASS can serve as a front-end to fast docking. The main utility of PASS lies in the fact that it can analyze a moderate-size protein (∼30 kDa) in under 20 s, which makes it suitable for interactive molecular modeling, protein database analysis, and aggressive virtual screening efforts. As a modeling tool, PASS (i) rapidly identifies favorable regions of the protein surface, (ii) simplifies visualization of residues modulating binding in these regions, and (iii) provides a means of directly visualizing buried volume, which is often inferred indirectly from curvature in a surface representation. PASS produces output in the form of standard PDB files, which are suitable for any modeling package, and provides script files to simplify visualization in Cerius2®, InsightII®, MOE®, Quanta®, RasMol®, and Sybyl®. PASS is freely available to all.

binding site buried volume cavity detection molecular modeling protein active site 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ringe, D., Curr. Opin. Struct. Biol., 5 (1995) 825.Google Scholar
  2. 2.
    Ruppert, J., Welch, W. and Jain, A.N., Protein Sci., 6 (1997) 524.Google Scholar
  3. 3.
    Connolly, M.L., J. Appl. Crystallogr., 16 (1983) 548.Google Scholar
  4. 4.
    Nicholls, A., Bharadwaj, R. and Honig, B., Biophys. J., 64 (1993) A166.Google Scholar
  5. 5.
    Ho, C.M.W. and Marshall, G.R., J. Comput.-Aided Mol. Design, 4 (1990) 337.Google Scholar
  6. 6.
    Kleywegt, G.J. and Jones, T.A., Acta Crystallogr., D50 (1994) 178.Google Scholar
  7. 7.
    Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.Google Scholar
  8. 8.
    Laskowski, R.A., J. Mol. Graphics, 13 (1995) 323.Google Scholar
  9. 9.
    Levitt, D.G. and Banaszak, L.J., J. Mol. Graphics, 10 (1992) 229.Google Scholar
  10. 10.
    Masuya, M. and Doi, J., J. Mol. Graphics, 13 (1995) 331.Google Scholar
  11. 11.
    Voorintholt, R., Kosters, M.T., Vegter, G., Vriend, G. and Hol, W.G.J., J. Mol. Graphics, 7 (1989) 243.Google Scholar
  12. 12.
    Stouten, P.F.W., Froemmel, C., Nakamura, H. and Sander, C., Mol. Simul., 10 (1993) 97.Google Scholar
  13. 13.
    Cerius2, Version 3.8, Molecular Simulations Inc., San Diego, CA, 1998.Google Scholar
  14. 14.
    InsightII, Version 97.2, Molecular Simulations Inc., San Diego, CA, 1998.Google Scholar
  15. 15.
    MOE, Version 1997.09, Chemical Computing Group Inc., Montreal, 1997.Google Scholar
  16. 16.
    Quanta, Version 97.1003, Molecular Simulations Inc., San Diego, CA, 1997.Google Scholar
  17. 17.
    RasMol, Version 2.6, Roger Sayle, Hertfordshire, U.K., 1997.Google Scholar
  18. 18.
    Sybyl, Version 6.5, Tripos Inc., St. Louis, MO, 1998.Google Scholar
  19. 19.
    Kurita, T., Pattern Recognition, 24 (1991) 205.Google Scholar
  20. 20.
    Mattos, C. and Ringe, D., Nat. Biotechnol., 14 (1996) 595.Google Scholar
  21. 21.
    Shuker, S.B., Hajduk, P.J., Meadows, R.P. and Fesik, S.W., Science, 274 (1996) 1531.Google Scholar
  22. 22.
    Hurley, J.H., Curr. Opin. Struct. Biol., 6 (1998) 770.Google Scholar
  23. 23.
    Delany, J.S., J. Mol. Graphics, 10 (1992) 174.Google Scholar
  24. 24.
    Hendlich, M., Rippmann, F. and Barnickel, G., J. Mol. Graphics Modelling, 15 (1997) 359.Google Scholar
  25. 25.
    Kisljuk, O.S., Kachalova, G.S. and Lanina, N.P., J. Mol. Graphics, 12 (1994) 305.Google Scholar
  26. 26.
    Young, L., Jernigan, R.L. and Covell, D.G., Protein Sci., 3 (1994) 717.Google Scholar
  27. 27.
    Kurochkina, N. and Privalov, G., Protein Sci., 7 (1998) 897.Google Scholar
  28. 28.
    Lewis, M. and Rees, D.C., Science, 230 (1985) 1163.Google Scholar
  29. 29.
    Del Carpio, C.A., Takasashi, Y. and Sasaki, S., J. Mol. Graphics, 11 (1993) 23.Google Scholar
  30. 30.
    Williams, M.A., Goodfellow, J.M. and Thornton, J.M., Protein Sci., 3 (1994) 1224.Google Scholar
  31. 31.
    Yeates, T.O., J. Mol. Biol., 249 (1995) 804.Google Scholar
  32. 32.
    Brady, G.P. and Sharp, K.A., Curr. Opin. Struct. Biol., 7 (1997) 215.Google Scholar
  33. 33.
    Holtzer, A., Biopolymers, 35 (1995) 595.Google Scholar
  34. 34.
    Murphy, K.P., Xie, D., Thompson, K.S., Amzel, L.M. and Freire, E., Proteins Struct. Funct. Genet., 18 (1994) 63.Google Scholar
  35. 35.
    Ajay, M. and Stouten, P.F.W., In Charifson, P.S. (Ed.) Practical Application of Computer-Aided Drug Design, Marcel Dekker, New York, NY, 1997, p. 355.Google Scholar
  36. 36.
    Brady, G.P. and Sharp, K.A., Biophys. J., 72 (1997) 913.Google Scholar
  37. 37.
    Gilson, M.K., Given, J.A., Bush, B.L. and McCammon, J.A., Biophys. J., 72 (1997) 1047.Google Scholar
  38. 38.
    Kauzmann, W., Adv. Protein Chem., 14 (1959) 1.Google Scholar
  39. 39.
    Makhatadze, G.I. and Privalov, P.L., Adv. Protein Chem., 47 (1995) 307.Google Scholar
  40. 40.
    Madan, B. and Sharp, K.A., J. Phys. Chem., 100 (1996) 7713.Google Scholar
  41. 41.
    Kuntz, I.D., Chen, K., Sharp, K.A. and Kollman, P.A., Proc. Natl. Acad. Sci. USA, 96 (1999) 9997.Google Scholar
  42. 42.
    Bondi, A., J. Phys. Chem., 68 (1964) 441.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • G. Patrick BradyJr
    • 1
  • Pieter F.W. Stouten
    • 1
  1. 1.Experimental Station E500DuPont Pharmaceuticals CompanyWilmingtonU.S.A.

Personalised recommendations