Journal of Paleolimnology

, Volume 25, Issue 1, pp 25–42 | Cite as

Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions

  • Euan Reavie
  • John Smol


Lake eutrophication is a problem in many areas of Ontario, although the history of nutrient enrichment is poorly documented. The aim of this study was to construct a diatom-based transfer function to infer past phosphorus levels in Ontario lakes using paleolimnological analyses. The relationship between diatom assemblages and limnological conditions was explored from a survey of diatoms preserved in the surface sediments of 64 Southern Ontario lakes, spanning a total phosphorus gradient of 0.004 to 0.054 mg L-1. Over 420 diatom taxa were identified, 98 of which were sufficiently common to be considered in statistical analyses. Canonical correspondence analysis (CCA) determined that pH, ammonium, aluminum, spring total phosphorus (TP), strontium, total nitrogen (TN), maximum depth (MaxZ), chlorophyll a (Chla) and mean depth were significant variables in explaining the variance in the diatom species data. The environmental optima of common diatom taxa for the limnologically important variables (TP, pH, TN, MaxZ, Chla) were calculated using weighted averaging (WA) regression and calibration techniques, and transfer functions were generated. The diatom inference model for spring TP provided a robust reconstructive relationship (r2 = 0.637; RMSE = 0.007 mg L-1; r2boot = 0.466; RMSEboot = 0.010 mg L-1). Other variables, including pH (r2 = 0.702; RMSE = 0.208; r2boot = 0.485; RMSEboot = 0.234), TN (r2 = 0.574; RMSE = 0.0899 mg L-1; r2boot = 0.380; RMSEboot = 0.127 mg L-1) and MaxZ (r2 = 0.554; RMSE = 1.05 m; r2boot = 0.380; RMSEboot = 1.490 m), were also strong, indicating that they may also be reconstructed from fossil diatom communities. This study shows that it is possible to reliably infer lakewater TP and other limnological variables in alkaline Southern Ontario lakes using the WA technique. This method has the potential to aid rehabilitation programs, as it can provide water quality managers with the means to estimate pre-enrichment phosphorus concentrations and an indication of the onset and development of nutrient enrichment in a lake.

eutrophication diatoms Ontario training set calibration phosphorus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. S., R. B. Davis & M. S. Ford, 1993. Relationships of sedimented diatom species (Bacillariophyceae) to environmental gradients in dilute northern New England lakes. J. Phycol. 29: 264–277.Google Scholar
  2. Anderson, N. J., 1995. Diatom-based phosphorus transfer functions - errors and validation. In Patrick, S. T. & N. J. Anderson (eds), Ecology and Paleoecology of lake eutrophication. Service report 7, Geological Survey of Denmark, Copenhagen: 39–40.Google Scholar
  3. Bennion, H., 1993. A diatom-phosphorus transfer function for eutrophic ponds in southeast England. PhD thesis, Department of Geography, University College London: 429 pp.Google Scholar
  4. Bennion, H., 1994. A diatom-phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia 275/276: 391–410.Google Scholar
  5. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical modelling of Quaternary science data. Technical Guide 5, Quaternary Research Association, Cambridge: 161–254Google Scholar
  6. Birks, H. J. B., J. M Line, S. Juggins, A. C. Stevenson & C. J. F. Ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. r. Soc., Lond. 327: 263–278.Google Scholar
  7. Camburn, K. E., J. C. Kingston & D. F. Charles, 1984- 1986. PIRLA Diatom Iconograph. PIRLA Unpublished Report Series 3. Indiana University, Bloomington.Google Scholar
  8. Chapman, L. J. & D. F. Putnam, 1966. The physiography of southern Ontario. University of Toronto Press, Toronto: 386 pp.Google Scholar
  9. Charles, D. F., J. P Smol & D. R. Engstrom, 1994. Paleolimnological approaches to biological monitoring. In Loeb S. L. & A. Spacie (eds), Biological Monitoring of Aquatic Systems. CRC Press, Boca Raton, Florida: 233–293.Google Scholar
  10. Christie, C. E. & J. P. Smol, 1993. Diatom assemblages as indicators of lake trophic status in southeastern Ontario lakes. J. Phycol. 29: 575–586.Google Scholar
  11. Cumming, B. F., S. E. Wilson, R. I. Hall & J. P. Smol, 1995. Diatoms from British Columbia (Canada) Lakes and their Relationship to Salinity, Nutrients, and other Limnological Variables. Bibliotheca Diatomologica. J. Cramer, Berlin: 207 pp.Google Scholar
  12. Conservation Authorities Branch, Ontario, 1970. History of the Rideau Waterway. Toronto: 83 pp.Google Scholar
  13. Dixit, S. S., J. P. Smol, J. C. Kingston & D. F. Charles, 1992. Diatoms: powerful indicators of environmental change. Environ. Sci. Technol. 26: 22–33.Google Scholar
  14. Dixit, S. S., J. P. Smol, D. F. Charles, R. M. Hughes, S. G. Paulsen & G. B. Collins, 1999. Assessing water quality changes in the lakes of the northern United States using sediment diatoms. Can. J. Fish. Aquat. Sci. 56: 131–152.Google Scholar
  15. Glew, J. R., 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. J. Paleolim. 1: 229–234.Google Scholar
  16. Glew, J. R., 1989. A new trigger mechanism for sediment samplers. J. Paleolim. 2: 241–243.Google Scholar
  17. Hall, R. I. & J. P. Smol, 1999. Diatoms as indicators of lake eutrophication. In Stoermer E. F. & J. P. Smol (eds). The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 128–168.Google Scholar
  18. Hill, M. O., 1973. Reciprocal averaging: an eigenvalue method of ordination. J. Ecol. 61: 237–249.Google Scholar
  19. Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.Google Scholar
  20. Janhurst, S. (ed), 1998. 1995 and 1996 performance report: general chemistry and microbiology analyses section. Ontario Ministry of Environment report: 306 pp.Google Scholar
  21. Juggins, S. & C. J. F. Ter Braak, 1993. CALIBRATE-unpublished computer program. Environmental Change Research Centre, University College, London.Google Scholar
  22. Krammer, K. & H. Lange-Bertalot, 1986- 1991. Bacillariophyceae. In Ettl H., J. Gerloff, H. Hyenig & D. Mollenhauer (eds), Sü sswasserflora von Mitteleuropa 2/1- 4. Fischer, Stuttgart.Google Scholar
  23. Line, J. M., C. J. F. Ter Braak & H. J. B. Birks, 1994. WACALIB version 3.3 - a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J. Paleolim. 10: 147–152.Google Scholar
  24. Patrick, R. & C. Reimer, 1966. The Diatoms of the United States, Vol. 1. Academy of Natural Sciences, Philadelphia: 668 pp.Google Scholar
  25. Reavie, E. D., J. P. Smol & R. I. Hall, 1995. An expanded weightedaveraging model for inferring past total phosphorus concentrations from diatom assemblages in eutrophic British Columbia (Canada) lakes. J. Paleolim. 14: 49–67.Google Scholar
  26. Reavie, E. D. & J. P. Smol, 1998. Freshwater diatoms from the St. Lawrence River. Bibliotheca Diatomologica, Band 41. J. Cramer, Berlin: 137 pp.Google Scholar
  27. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 4275.Google Scholar
  28. Smol, J. P., 1995. Application of chrysophytes to problems in paleoecology. In Sandgren C. D., J. P. Smol & J. Kristiansen (eds), Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge, UK: 303–329.Google Scholar
  29. Stoermer, E. F. & J. P. Smol (eds), 1999. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 484 pp.Google Scholar
  30. Ter Braak, C. J. F., 1995. Ordination. In Jongman R. H., C. J. F. ter Braak & O. F. T. van Tongeren (eds), Data Analysis in Community Ecology. Pudoc, Wageningen: 91–173.Google Scholar
  31. Ter Braak, C. J. F. & P. 'milauer, 1998. CANOCO reference manual and user's guide to CANOCO for Windows: Software for canonical community ordination (version 4). Microcomputer Power, Ithaca, New York: 352 pp.Google Scholar
  32. Walker, I. R., 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29–40.Google Scholar
  33. Zar, J. H., 1984. Biostatistical Analysis. 2nd. ed. Prentice-Hall, Englewood Cliffs, N.J.: 718 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Euan Reavie
    • 1
  • John Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen's UniversityKingstonCanada

Personalised recommendations