Journal of Applied Phycology

, Volume 12, Issue 3–5, pp 369–377 | Cite as

Cryopreservation-recalcitrance in microalgae: novel approaches to identify and avoid cryo-injury

  • John G. Day
  • Roland A. Fleck
  • Erica E. Benson


Standard two-step freezing protocols areunsatisfactory for Euglena gracilis and manyother microalgae, particularly those with larger cellsizes, complex morphologies and/or those susceptibleto environmental stress. Using techniques that allowmechanisms of injury and sites of damage to beidentified (e.g. monitoring oxygen evolving capacity,detection of OH, microscopic visualisation ofintracellular ice and structural/ultrastructuraldamage), it is possible to improve conventionalcryopreservation methodologies. In E. gracilisthis has resulted in the development of protocolswhich increased post-thaw viability levels from 0 to20%. Alternative cryoprotection strategies testedincluded vitrification and encapsulation/dehydration.Vitrification was unsuccessful due to the hightoxicity of the solutions. Encapsulation/dehydration,with or without two-step cooling were suitable forcryopreservation of E. gracilis, the latterresulted in the highest levels of post-thaw viability(40%) and viability was maintained after 12 monthsstorage.

algae cryo-injury cryopreservation culture collection cryo-storage Euglenagracilis encapsulation/dehydration vitrification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benson EE, Lynch PT, Jones J (1995) The use of the iron chelating agent desferrioxamine in rice cell cryopreservation: A novel approach for improving recovery. Plant Sci. 110: 249-258.Google Scholar
  2. Brown S, Day JG (1993) An improved method for the long-term preservation of Naegleria gruberi. Cryo-Letters 14: 347-352.Google Scholar
  3. Canavate JP, Lubian LM (1995) Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae. Mar. Biol. 124: 325-334Google Scholar
  4. Crist RH Martin JR, Carr D, Watson JR, Clarke HJ, Crist DLR (1994) Interaction of metals and protons with algae.4. Ionexchange vs adsorption models and a reassessment of scatchard plots ion-exchange rates and equilibria compared with calcium alginate. Environ. Sci. Technol. 28: 1859-1866.Google Scholar
  5. Day JG (1998) Cryo-conservation of microalgae and cyanobacteria. Cryo-Letters Supplement 1: 7-14.Google Scholar
  6. Day JG, Codd GA (1985) Photosynthesis and glycollate excretion by immobilized Chlorella emersonii. Biotechnol. Letts 7: 573-577.Google Scholar
  7. Day JG, Watanabe MM, Morris GJ, Fleck RA, McLellan MR (1997) Long-term viability of preserved eukaryotic algae. J. appl. Phycol. 9: 121-127.Google Scholar
  8. Day JG, Watanabe MM, Turner MF (1998) Ex situ conservation of protistan and cyanobacterial biodiversity: CCAP-NIES collaboration 1991-1997. Phycol. Research 46 Supplement: 77-83.Google Scholar
  9. Fleck RA (1998) The assessment of cell damage and recovery in cryopreserved freshwater protists. PhD Thesis, Univ. Abertay Dundee, 393 pp.Google Scholar
  10. Fleck RA, Benson EE, Bremner DH, Day JG (2000) Studies of free radical-mediated cryoinjury in the unicellular green alga Euglena gracilis using a non-destructive hydroxyl radical assay: A new approach for developing protistan cryopreservation strategies. Free Rad. Res. 32: 157-170.Google Scholar
  11. Fleck RA, Day JG, Clarke KJ, Benson EE (1999) Elucidation of the metabolic and structural basis for the cryopreservation recalcitrance of Vaucheria sessilis. Cryo-Letters 20: 271-282.Google Scholar
  12. Fleck RA, Day JG, Rana KJ, Benson EE (1997) Visualisation of cryoinjury and freeze events in the coenocytic alga Vaucheria sessilis using cryomicroscopy. Cryo-Letters 18: 343-355.Google Scholar
  13. Grout BWW (1995) Introduction to the in vitro preservation of plant cells, tissues and organs. In Grout BWW (ed.), Genetic Preservation of Plant Cells in Vitro, Springer, Berlin, pp. 1-20.Google Scholar
  14. Hebbel RP, Eaton JW, Balasingam M, Steinberg MH (1982) Spontaneous oxygen radical generation by stickle erythrocytes. Clin. Invest. 70: 1253-1259.Google Scholar
  15. Hirata K, Phunchindawan M, Kanemoto M, Miyamoto K, Sakai A (1995) Cryopreservation of shoot primordia induced from horseradish hairy root cultures by encapsulation and two-step dehydration. Cryo-Letters 16: 122-127.Google Scholar
  16. Ishikawa K, Harata K, Mii M, Sakai A, Yoshimatsu K, Shimomura K (1997) Cryopreservation of zygotic embryos of a Japanese terrestrial orchid (Bletilla striata) by vitrification. Plant Cell Rep. 16: 754-757.Google Scholar
  17. Kojima T, Hashimoto K, Ito S, Hori Y, Tomizuka T, Oguri N (1990) Protection of rabbit embryos against fracture damage from freezing and thawing by encapsulation in calcium alginate gel. J. exp. Zool. 254: 186-191Google Scholar
  18. Luyet B, Rapatz G (1958) Patterns of ice formation in some aqueous solutions. Biodynamica 8: 1-68.Google Scholar
  19. MacKinney G (1941) Absorption of light by chlorophyll solutions. J. Biol. Chem. 140: 315-322.Google Scholar
  20. Maruyama E, Kinoshita I, Ishii K, Ohba K, Sakai A (1997) Germplasm conservation of Guazuma crinita, a useful tree in the Peru-Amazon, by the cryopreservation of in vitro cultured multiple bud clusters. Plant Cell Tissue Organ Cult. 48: 161-165.Google Scholar
  21. McLellan MR (1989) Cryopreservation of diatoms. Diatom Research 4: 301-318.Google Scholar
  22. Morris GJ (1976a) The cryopreservation of Chlorella 1. Interactions of rate of cooling, protective additive and warming rate. Arch. Microbiol. 107: 57-62.Google Scholar
  23. Morris GJ (1976b) The cryopreservation of Chlorella 2. Effect of growth temperature on freezing tolerance. Arch. Microbiol. 107: 309-312.Google Scholar
  24. Morris GJ (1978) Cryopreservation of 250 strains of Chlorococcales by the method of two step cooling. Br. phycol. J. 13: 15-24.Google Scholar
  25. Morris GJ (1981) Cryopreservation. An introduction to cryopreservation in culture collections. Institute of Terrestrial Ecology, Cambridge, UK. 27 pp.Google Scholar
  26. Morris GJ, Canning CE (1978) The cryopreservation of Euglena gracilis J. gen. Microbiol. 108: 27-31.Google Scholar
  27. Morris GJ, McGrath JJ (1981) Intracellular ice nucleation and gas bubble formation in Spirogyra. Cryo-Letters 2: 341-352.Google Scholar
  28. Morris GJ, Clarke KJ, Clarke A (1977) The cryopreservation of Chlorella 3. Effect of heterotrophic nutrition on freezing tolerance. Arch. Microbiol. 114: 249-254Google Scholar
  29. Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci. 91: 67-73Google Scholar
  30. Sakai A, Kobayashi S, Oiyama I (1991) Survival by vitrification of nucellar cells of navel orange Citrus sinensis var. brasiliensis tanaka cooled to-196 °C. J. Plant Physiol. 137: 465-470.Google Scholar
  31. Smith D, Thomas VE (1998) Cryogenic light microscopy and the development of cooling protocols for the cryopreservation of filamentous fungi. World J. Microbiol. Biotechnol. 14: 49-57Google Scholar
  32. Stillinger FA (1995) Topographic view of supercooled liquids and glass formation. Science 267: 1935-1939.Google Scholar
  33. Tompkins J, DeVille MM, Day JG, Turner MF (eds) (1995) Culture Collection of Algae and Protozoa Catalogue of strains. Culture Collection of Algae and Protozoa, Ambleside. 204 pp.Google Scholar
  34. Vigneron T, Arbault S, Kaas R (1997) Cryopreservation of gametophytes of Laminaria digitata (L.) Lamouroux by encapsulation dehydration. Cryo-Letters 18: 93-98.Google Scholar
  35. Whitelam G, Codd GA (1983) Photoinhibition of photosynthesis and in vivo chlorophyll fluorescence in the green alga Ankistrodesmus braunii. Plant Cell Physiol. 25: 465-471Google Scholar
  36. Yamada T, Sakai A, Matsumura T, Higuchi S (1991) Cryopreservation of apical meristems of white clover Trifolium repens L. by vitrification. Plant Sci. 78: 81-88.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • John G. Day
    • 1
  • Roland A. Fleck
    • 2
  • Erica E. Benson
    • 3
  1. 1.Culture Collection of Algae and Protozoa, Centre for Ecology & Hydrology Windermere, Far SawreyNERC0LPUK
  2. 2.Department of Soil, Crop and Atmospheric SciencesCornell UniversityIthacaUSA
  3. 3.Plant Conservation Biotechnology Group, Division of Molecular and Life Sciences, School of Science and EngineeringUniversity of Abertay DundeeDundeeScotland, UK

Personalised recommendations