Interplay between Molecular Recognition and Redox Properties: A Theoretical Study of the Inclusion Complexation of β-Cyclodextrin with Phenothiazine and its Radical Cation

  • Lei Liu
  • Xiao-Song Li
  • Ting-Wei Mu
  • Qing-Xiang Guo
  • You-Cheng Liu


The PM3 molecular orbital method was employed in the conformational analysis of the inclusion complexation of β-cyclodextrin with phenothiazine and its radical cation from a complete and unrestricted geometry optimization. Ab initio calculations at the level of HF/3-21G(d) and B3LYP/3-21G(d) were utilized to determine the electronic structures of the host, guest and their complexes. The results indicated that the complexation of β-cyclodextrin with the phenothiazineradical cation was significantly more favorable than that with the neutral one, in good agreement with the experimental observation. The charge-transfer interaction was proposed as a physical reason for such behavior. It is suggested that caution should be given when extrapolating one oxidation state behavior to the supramolecular systems in their other oxidation states.

cyclodextrin inclusion phenothiazine radical cation theoretical study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Szejtli: Chem. Rev. 98, 1743 (1998).Google Scholar
  2. 2.
    K. A. Connors: Chem. Rev. 97, 1325 (1997).Google Scholar
  3. 3.
    R. Breslow and S. D. Dong: Chem. Rev. 98, 1997 (1998).Google Scholar
  4. 4.
    K. B. Lipkowitz: Chem. Rev. 98, 1829 (1998).Google Scholar
  5. 5.
    Q.-X. Guo, L. Liu, W.-S. Cai, Y. Jiang and Y.-C. Liu: Chem. Phys. Lett. 290, 514 (1998).Google Scholar
  6. 6.
    L. Liu and Q.-X. Guo: J. Phys. Chem. B. 103, 3461 (1999).Google Scholar
  7. 7.
    J. M. Madrid, F. Mendicuti, and W. L. Mattice: J Phys. Chem. B. 102, 2037 (1998).Google Scholar
  8. 8.
    T. Kozar and C. Venanzi: J. Mol. Struct. (THEOCHEM) 395-396, 451 (1997).Google Scholar
  9. 9.
    M. Kitagawa, H. Hoshi, M. Sakarai, Y. Inoue, and R. Chujo: Carhohydr. Res. 163, C1 (1987).Google Scholar
  10. 10.
    M. Sakurai, M. Kitagawa, H. Hoshi, Y. Inoue, and R. Chujo: Bull. Chem. Soc. Jpn. 62, 2067 (1989).Google Scholar
  11. 11.
    A. Botsi, K. Yannakopoulou, E. Hadjoudis, and J. Waite: Carbohydr. Res. 283, 1 (1996).Google Scholar
  12. 12.
    M. J. Huang, J. D. Watts, and N. Bodor: Int. J. Quantum Chem. 64, 711 (1997).Google Scholar
  13. 13.
    M. J. Huang, J. D. Watts, and N. Bodor: Int. J. Quantum Chem. 65, 1135 (1997).Google Scholar
  14. 14.
    N. Balabai, B. Linton, A. Nappet; S. Priyadarshy, R Sukharevsky, and D. H. Waldeck: J. Phys. Chem. B. 102, 9617 (1998).Google Scholar
  15. 15.
    E. B. Starikov, W. Saenger, and T. Steiner: Carbohydr. Res. 307, 343 (1998).Google Scholar
  16. 16.
    A. E. Kaifer: Acc. Chem. Res. 32, 62 (1999).Google Scholar
  17. 17.
    A. Niemz and V. M. Rotello: Acc. Chem. Res. 32, 44 (1999).Google Scholar
  18. 18.
    W. J. Albery, A. W. Foulds, K. J. Hall, A. R. Hillman, R. G. Edgell, and A. F. Orchard: Nature 282, 793 (1979).Google Scholar
  19. 19.
    W.-G. Li, X.-Q. Ruan, and Q.-X. Guo: Chin. Chem. Lett. 9,1051 (1998).Google Scholar
  20. 20.
    H.-M. Zhang, X.-Q. Ruan, Q.-X. Guo, and Y.-C. Liu: Chem. Lett. 449 (1998).Google Scholar
  21. 21.
    X.-Q. Zheng, X.-Q. Ruan, W. Wang, H.-M. Zhang, Q.-X. Guo, and Y.-C. Liu: Bull. Chem. Soc. Jpn. 72, 253 (1999).Google Scholar
  22. 22.
    X.-J. Dang, M.-Y. Nie, J. Tong, and H.-L. Li: J. Electroanal. Chem. 437, 53 (1997).Google Scholar
  23. 23.
    J. J. P. Stewart: J. Comput. Chem. 209, 221 (1989).Google Scholar
  24. 24.
    R. Castro, M. J. Berardi, E. Cordova, M. O. de Olza, A. E. Kaifer, and J. D. Evanseck: J. Am. Chem. Soc. 118, 10257 (1996).Google Scholar
  25. 25.
    X.-S. Li, L. Liu, Q.-X Guo, S.-D. Chu, and Y.-C. Liu: Chem. Phys. Lett. 307, 117 (1999).Google Scholar
  26. 26.
    GAUSSIAN 98, Revision A.7, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala. Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.Google Scholar
  27. 27.
    C. Betzel, W. Saenger, B. E. Hingerty, and G. M. Brown: J Am. Chem. Soc. 106, 7545 (1984).Google Scholar
  28. 28.
    Q.-X. Guo, H.-Y. Liu, Q.-X. Ruan, X.-Q. Zheng, Y.-Y. Shi, and Y.-C. Liu: J. Incl. Phenom. 35, 487 (1999).Google Scholar
  29. 29.
    D. B. Boyd: J. Mol Struct. (THEOCHEM) 401, 219 (1997).Google Scholar
  30. 30.
    J. N. Murrell: J Mol.Struct. (THEOCHEM) 424, 93 (1998).Google Scholar
  31. 31.
    A. B. Wong, S.-F. Lin, and K. A. Connors: J. Pharm. Sci. 72, 388 (1983).Google Scholar
  32. 32.
    K. A. Connors and D. D. Pendergast: J. Am. Chem. Soc. 106, 7607 (1984).Google Scholar
  33. 33.
    K. Morokuma: Acc. Chem. Res. 10, 294 (1977).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Lei Liu
    • 1
    • 2
  • Xiao-Song Li
    • 1
    • 2
  • Ting-Wei Mu
    • 1
    • 2
  • Qing-Xiang Guo
    • 1
    • 2
  • You-Cheng Liu
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of Science and Technology of ChinaHefeiP.R. China
  2. 2.National Laboratory of Applied Organic ChemistryLanzhou UniversityLanzhouP.R. China

Personalised recommendations