Journal of Applied Phycology

, Volume 10, Issue 5, pp 481–501 | Cite as

Cryopreservation of eukaryotic algae – a review of methodologies

  • Rebecca Taylor
  • Robert L. Fletcher


Since pioneering work in the early 1960s, there has been growing interest and numerous experimental investigations into the cryopreservation of algal material. Mostly, these studies relate to the requirement for long term preservation and storage of algal material contained in culture collections or used in the seaweed mariculture industry. The present review deals with techniques used in the cryopreservation of biological samples and their application to both micro- and macroalgae. Methods for the prevention of cell damage and freezing injury during the cooling and low-temperature storage of algal material are discussed with reference to the effect on viability of such variables as cooling rates, final temperatures attained, the use of various types and concentrations of cryoprotectants, thawing rates, and storage times and temperatures. Some consideration is also given to the various methods used for increasing cell viability, including the induction of freezing tolerance. Cryopreservation protocols employed by numerous workers in this field are detailed, and concluding remarks are made on those techniques and conditions providing optimum viability of cryopreserved algae.

cryopreservation microalgae macroalgae cryoprotectant cooling rate freezing tolerance storage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen RA (1996) Algae. In: Hunter-Cevera JC, Belt A (eds), Maintaining Cultures for Biotechnology and Industry. Academic Press, San Diego: 29-64.Google Scholar
  2. Arbault S, Renard P, Pérez R, Kass R (1990) Essai de cryoconservation des gamétophytes de l'algue alimentaire Undaria pinnatifida(Laminariales). Aquat. Living Resour. 3: 207-215.Google Scholar
  3. Arbault S, Delanoue F (1994) Cryoconservation du conchocelis de Porphyra linearis(Rhodophyceae). Cryoptogamie Algol. 15: 65-72.Google Scholar
  4. Bajaj YPS, Reinert J (1977) Cryobiology of plant cell cultures and establishment of gene banks. In: Reinert J, Bajaj YPS (eds), Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture. Springer-Verlag, Berlin: 575-789.Google Scholar
  5. Ben-Amotz A, Gilboa A (1980a) Cryopreservation of marine unicellular algae. 1. A survey of algae with regard to size, culture, age, photosynthetic activity and chlorophyll-to-cell ratio. Mar. Ecol. Progr. Ser. 2: 157-161.Google Scholar
  6. Ben-Amotz A, Gilboa A (1980b) Cryopreservation of marine unicellular algae. 2. Induction of freezing tolerance. Mar. Ecol. Progr. Ser. 2: 221-224.Google Scholar
  7. Benhra A, Ferard JF, Vasseur P (1994) Factorial design to optimise the viability of the alga Scenedesmus subspicatusafter cryopreservation. Cryo-Letters 15: 269-278.Google Scholar
  8. Biebl R 1958) Temperature und osmotische Resistenz von Meeresalgen der bretonischen Kuste. Protoplasma 50: 217-242.CrossRefGoogle Scholar
  9. Biebl R (1962) Seaweeds. In: Lewin RA (ed.), Physiology and Biochemistry of the Algae. Academic Press, New York: 799-815.Google Scholar
  10. Bird CJ, McLachlan J (1974) Cold hardiness of zygotes and embryos of Fucus(Phaeophyceae, Fucales). Phycologia 13: 215-225.Google Scholar
  11. Bodas K, Brennig C, Diller KR, Brand JJ (1995) Cryopreservation of blue-green and eukaryotic algae in the culture collection at the University of Texas at Austin. Cryo-Letters 16: 267-274.Google Scholar
  12. Brown S, Day JG (1993) An improved method for the long-term preservation of Naegleria gruberi. Cryo-Letters 14: 347-352.Google Scholar
  13. Cañavate JP, Lubian LM (1994) Tolerance of six marine microalgae to the cryoprotectants DMSO and methanol. J. Phycol. 30: 559-565.CrossRefGoogle Scholar
  14. Cañavate JP, Lubian LM (1995a) Some aspects of the cryopreservation of microalgae used as food for marine species. Aquaculture 136: 277-290.CrossRefGoogle Scholar
  15. Cañavate JP, Lubian LM (1995b) Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae. Mar. Biol. 124: 325-334.CrossRefGoogle Scholar
  16. Cañavate JP, Lubian LM (1997a) Effects of culture age on cryopreservation of marine microalgae. Eur. J. Phycol. 32: 87-90.CrossRefGoogle Scholar
  17. Cañavate JP, Lubian LM (1997b) Effects of slow and rapid warming on the cryopreservation of marine microalgae. Cryobiology 35: 143-149.CrossRefGoogle Scholar
  18. Cohn F (1871) Das Gefrieren der Zellen von Nitella syncarpa. Bot. Zeit. 29: 723-744.Google Scholar
  19. Cordero B, Voltolina D (1997) Viability of mass algal cultures preserved by freezing and freeze-drying. Aquacultural Engineering 16: 205-211.CrossRefGoogle Scholar
  20. Day JG (1998) Cryo-conservation of microalgae and cyanobacteria. Cryo-Letters Supplement 1: 7-14.Google Scholar
  21. Day JG, DeVille MM (1995) Cryopreservation of algae. In: Day JG, McLellan MR (eds), Methods in Molecular Biology, Volume 38: Cryopreservation and Freeze-Drying Protocols. Humana Press Inc., Totowa, NJ: 81-89.Google Scholar
  22. Day JG, Fenwick C (1993) Cryopreservation of members of the genus Tetraselmisused in aquaculture. Aquaculture 118: 151-160.CrossRefGoogle Scholar
  23. Day JG, Fleck RA, Benson EE (1998) Cryopreservation of multicellular algae: problems and perspectives. Cryo-Letters 19: 205-206.Google Scholar
  24. Day JG, Watanabe MM, Morris GJ, Fleck RA, McLellan MR (1997) Long-term viability of preserved eukaryotic algae. J. appl. Phycol. 9: 121–127.CrossRefGoogle Scholar
  25. Dudgeon SR, Davison IR, Vandas RL (1989) Effect of freezing on photosynthesis of intertidal macroalgae: tolerance of Chondrus crispusand Mastocarpus stellatus(Rhodophyta). Mar. Biol. 101: 107-114.CrossRefGoogle Scholar
  26. Dudgeon SR, Davison IR, Vandas RL (1990) Freezing tolerance in the intertidal red algae Chondrus crispusand Mastocarpus stellatus: relative importance of acclimation and adaption. Mar. Biol. 106: 427-436.CrossRefGoogle Scholar
  27. Fahy GM (1986) The relevance of cryoprotectant toxicity to cryobiology. Cryobiology 23: 1-13.PubMedCrossRefGoogle Scholar
  28. Fenwick C, Day JG (1992) Cryopreservation of Tetraselmis suecicacultured under different nutrient regimes. J. appl. Phycol. 4: 105-109.CrossRefGoogle Scholar
  29. Fleck RA, Day JG, Rana KJ, Benson EE (1997) Visualisation of cryoinjury and freeze events in the coenocytic alga Vaucheria sessilisusing cryomicroscopy. Cryo-Letters 18: 343-354.Google Scholar
  30. Florio L, Stewart M, Mugrage ER (1943) The effect of freezing on erythrocytes. J. Lab. Clin. Med. 28: 1486-1491.Google Scholar
  31. Gilboa A, Ben-Amotz A (1979) An improved method for rapid assaying of viability of cryopreserved unicellular algae. Plant Sci. Lett. 14: 317-320.CrossRefGoogle Scholar
  32. Ginsburger-Vogel T, Arbeult S, Pérez, R (1992) Ultrastructural study on the effect of freezing-thawing on the gametophytes of the brown alga Undaria pinnatifida. Aquaculture 106: 171-181.CrossRefGoogle Scholar
  33. Gresshoff PM (1977) Chlamydomonas reinhardi- a model plant system II. Cryopreservation. Plant Sci. Lett. 9: 23-25.CrossRefGoogle Scholar
  34. Grout BWW, Morris GJ (1987) Freezing and cellular organisation. In: Grout BWW, Morris GJ (eds), The effects of low temperature on biological systems. Edward Arnold, London: 147-174.Google Scholar
  35. Hirata K, Phunchindawan M, Takamoto J, Goda S, Miyamoto K (1996) Cryopreservation of microalgae using encapsulation-dehydration. Cryo-Letters 17: 321-328.Google Scholar
  36. Holm-Hansen O (1963) Viability of blue-green and green algae after freezing. Physiol. Pl. 16: 530-540.CrossRefGoogle Scholar
  37. Holm-Hansen O (1973) Preservation by freezing and freeze drying. In: Stein JR (ed.), Handbook of Phycological Methods - Culture Methods and Growth Measurements. Cambridge University Press, Cambridge: 195-205.Google Scholar
  38. Hwang SW, Horneland W (1965) Survival of algal cultures after freezing by controlled and uncontrolled cooling. Cryobiology 1: 305-311.PubMedCrossRefGoogle Scholar
  39. Hwang SW, Hudock GA (1971) Stability of Chlamydomonas reinhardiin liquid nitrogen storage. J. Phycol. 7: 300–303.CrossRefGoogle Scholar
  40. Kanwisher JW (1957) Freezing and drying in intertidal algae. Biol. Bull. 113: 275-285.Google Scholar
  41. Karha KK (1981) Meristem culture and cryopreservation - methods and applications. In: Thorpe TA (ed.), Plant Tissue Culture Methods and Applications in Agriculture. Academic Press, New York: 181-211.Google Scholar
  42. Karlsson JOM, Toner M (1996) Long term storage of tissues by cryopreservation: critical issues. Biomaterials 17: 243-256.PubMedCrossRefGoogle Scholar
  43. Kuwano K, Aruga Y, Saga N (1992) Preliminary study on cryopreservation of the conchocelis of Porphyra yezoensis. Nippon Suisan Gakkaishi 58: 1793-1798.Google Scholar
  44. Kuwano K, Aruga Y, Saga N (1993) Cryopreservation of the conchocelis of the marine alga Porphyra yezoensisUeda (Rhodophyta) in liquid nitrogen. Plant Science 94: 215-225.CrossRefGoogle Scholar
  45. Kuwano K, Aruga Y, Saga N (1994) Cryopreservation of the conchocelis phase of Porphyra(Rhodophyta) by applying a simple prefreezing system. J. Phycol. 30: 566-570.CrossRefGoogle Scholar
  46. Kuwano K, Aruga Y, Saga N (1996) Cryopreservation of clonal gametophytic thalli of Porphyra(Rhodophyta). Plant Science 116: 117-124.CrossRefGoogle Scholar
  47. Kylin H (1917) Uber die Kalteresistenz der Meeresalgen. Ber. deutsch. bot. Ges. 35: 370-384.Google Scholar
  48. Lee JJ, Soldo AT (1992) Protocols in protozoology. Society of Protozoologists, Lawrence, Kansas.Google Scholar
  49. Leeson EA, Cann JP, Morris GJ (1984) Maintenance of algae and protozoa. In: Kirsop BE, Snell JJS (eds), Maintenance of Microorganisms. Academic Press, London: 131-160.Google Scholar
  50. Leibo SP, Jones RF (1963) Effects of subzero temperatures on the unicellular red alga Porphyridium cruentum. J. Cell Comp. Physiol. 62: 295-302.CrossRefGoogle Scholar
  51. Leibo SP, Mazur P (1978) Methods for the preservation of mammalian embryos by freezing. In: Joseph Jr C (ed.), Methods in Mammalian Reproduction. Academic Press, New York: 179-201.Google Scholar
  52. Lovelock JE (1953) The haemolysis of human red blood cells by freezing and thawing. Biochim. Biophys. Acta. 10: 414-426.PubMedCrossRefGoogle Scholar
  53. Marré E (1962) Temperature. In: Lewin RA (ed.), Physiology and Biochemistry of Algae. Academic Press, New York: 541-550.Google Scholar
  54. Maurer RR (1978) Freezing mammalian embryos: a review of the techniques. Theriogenology 9: 45-68.CrossRefGoogle Scholar
  55. Mazur P (1960) Physical factors implicated in the death of microorganisms at subzero temperatures. Ann. NY Acad. Sci. 85: 610-629.PubMedGoogle Scholar
  56. Mazur P (1970) Cryobiology: the freezing of biological systems. Science 168: 939-949.PubMedGoogle Scholar
  57. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247: 125-142.Google Scholar
  58. Mazur P, Leibo S, Chu EHY (1972) A two-factor hypothesis of freezing injury. Exp. Cell Res. 71: 345-355.PubMedCrossRefGoogle Scholar
  59. McGee HA Jr, Martin WJ (1962) Cryochemistry. Cryogenics 2: 1-11.Google Scholar
  60. McGrath MS, Dagget PM (1977) Cryopreservation of flagellar mutants of Chlamydomonas reinhardi. Can J. Bot. 55: 1794-1796.CrossRefGoogle Scholar
  61. McLellan MR (1989) Cryopreservation of diatoms. Diatom Res. 4: 301-318.Google Scholar
  62. McLellan MR, Cowling AJ, Turner M, Day JG (1991) Maintenance of algae and protozoa. In: Kirsop BE, Doyle A (eds), Maintenance of Microorganisms and Cultured Cells. Academic Press, London: 183-208.Google Scholar
  63. Meryman HT (1966) Review of biological freezing. In: Meryman HT (ed.), Cryobiology. Academic Press, New York: 1-114.Google Scholar
  64. Meryman HT (1970) The exceeding of a minimum tolerable cell volume in hypertonic suspension as a cause of freezing injury. In: Wolstenholme GEW, O'Connor M (eds), The Frozen Cell: Ciba Foundation Symposium. Churchill, London: 51-64.Google Scholar
  65. Meyer MA (1985) Cryopreservation of a marine diatom. PhD thesis, Texas A & M University, College Station. 112 pp.Google Scholar
  66. Migita S (1964) Freeze-preservation of Porphyrathalli in a viable state. I. Viability of Porphyra tenerapreserved at low temperature after freezing in seawater and freezing under half-dried conditions. Bull. Fac. Fish. Nagasaki Univ. 17: 44-54.Google Scholar
  67. Migita S (1966) Freeze-preservation of Porphyrathalli in a viable state. II. Effect of cooling velocity and water content of thalli on the frost resistance. Bull. Fac. Fish. Nagasaki Univ. 21: 131-138.Google Scholar
  68. Migita S (1967) Viability and spore liberation of the conchocelisphase of Porphyra tenerafreeze preserved in seawater. Bull. Fac. Fish. Nagasaki Univ. 22: 33-43.Google Scholar
  69. Morris GJ (1976a) The cryopreservation of Chlorella. 1. Interactions of rate of cooling, protective additive and warming rate. Arch. Microbiol. 107: 57-62.PubMedCrossRefGoogle Scholar
  70. Morris GJ (1976b) The cryopreservation of Chlorella. 2. Effect of growth temperature on freezing tolerance. Arch. Microbiol. 107: 309-312.PubMedCrossRefGoogle Scholar
  71. Morris GJ (1978) Cryopreservation of 250 Strains of Chlorococcales by the method of two-step cooling. Br. phycol. J. 13: 15-24.Google Scholar
  72. Morris GJ (1981) Cryopreservation. An introduction of cryopreservation in culture collections. Institute of Terrestrial Ecology, Cambridge. 27 pp.Google Scholar
  73. Morris GJ, Canning CE (1978) The cryopreservation of Euglena gracilis. J. gen. Microbiol. 108: 27-31.Google Scholar
  74. Mortain-Bertrand A, Etchart F, Deboucaud MT (1996) A method for the cryoconservation of Dunaliella salina(Chlorophyceae) - Effect of glycerol and cold adaptation. J. Phycol. 32: 346-352.CrossRefGoogle Scholar
  75. Muldrew K, McGann LE (1990) Mechanisms of intracellular ice formation. Biophys. J. 57: 525-532.PubMedGoogle Scholar
  76. Parker J (1960) Seasonal changes in cold-hardiness of Fucus vesiculosus. Biol. Bull. 119: 474-478.Google Scholar
  77. Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperature. Nature 164: 166.Google Scholar
  78. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos by vitrification. Nature 313: 573-575.PubMedCrossRefGoogle Scholar
  79. Renard P, Arbault S, Kaas R, Perez R (1992) A method for the cryopreservation of the gametophytes of the food alga Undaria pinnatifida(Laminariales). Comptes Red. Acad. Sci. serie III - Life Sciences 315: 445-451.Google Scholar
  80. Saks NM (1978) The preservation of salt marsh algae by controlled liquid nitrogen freezing. Cryobiology 15: 563-568.PubMedCrossRefGoogle Scholar
  81. Snell JJS (1991) General introduction to maintenance methods. In: Kirsop BE, Doyle A (eds), Maintenance of Microorganisms and Cultured Cells. Academic Press, London: 21-30.Google Scholar
  82. Steponkus PL, Dowgert MF, Gordon-Kamm WJ (1983) Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation. Cryobiology 20: 448-465.PubMedCrossRefGoogle Scholar
  83. Steponkus PL, Langis R, Fujikawa S (1992) Cryopreservation of plant tissues by vitrification. In: Steponkus PL (ed.), Advances in Low-Temperature Biology, Volume 1. JAI Press, London: 1-61.Google Scholar
  84. Terumoto I (1961) Frost resistance in the marine alga Enteromorpha intestinalis(L) Link. Low Temp. Sci. Ser. 19: 23-28.Google Scholar
  85. Tsuru S (1973) Preservation of marine and freshwater algae by means of freezing and freez-drying. Cryobiology 10: 445-452.PubMedCrossRefGoogle Scholar
  86. van den Hoek C, Mann DG, Jahns HM (1995) Algae - An Introduction to Phycology. Cambridge University Press, Cambridge. 623 pp.Google Scholar
  87. van der Meer JP, Simpson FJ (1984) Cryopreservation of Gracilaria tikvahiae(Rhodophyta) and other macrophytic marine algae. Phycologia 23: 195-202.Google Scholar
  88. Vigneron T, Arbeult S, Kaas R (1997) Cryopreservation of gametophytes of Laminaria digitata(L) Lamouroux by encapsulated dehydration. Cryo-Letters 18: 93-98.Google Scholar
  89. Warren A, Day JG, Brown S (1997) Cultivation of algae and protozoa: In: Hurst CJ, Knudsen GR, McInerney MJ, Stezenbach LD, Walter MV (eds), Manual of Environmental Microbiology. ASM Press, Washington: 61-71.Google Scholar
  90. Woodcock AH, Thistle MW, Cook WH, Gibbons NE (1941) The ability of sheep's erythrocytes to survive freezing. Can. J. Res. 19: 206-212.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Rebecca Taylor
    • 1
  • Robert L. Fletcher
    • 2
  1. 1.Department of Biological SciencesUniversity of DundeeDundeeUK
  2. 2.Institute of Marine SciencesUniversity of PortsmouthEastney, Portsmouth, HampshireUK

Personalised recommendations